Spectrophotometric assay of metoclopramide hydrochloride in some pharmaceutical preparations via oxidation coupling reaction

Yousra M Al-Shaker

Department of Environmental Science College of Environmental Technology, University of Mosul , Mosul, Iraq

Received	<u>Accepted</u>
11.11.47	۲۰٫٦٫۲۰۱۲

ABSTRACT

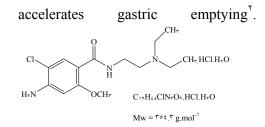
Objectives: A simple and sensitive spectrophotometric method has been developed for the quantitative determination of metoclopramide hydrochloride (MCP) in both pure form and in its pharmaceutical formulations.

Materials and methods: The method is based on oxidative coupling reaction of the determined metoclopramide hydrochloride with promethazine in acidic medium (•.• M hydrochloric acid) by N-chlorosuccinamide (NCS) to form red-violet thiazine.

Results: Water-soluble coloured product which showed maximum absorption at $11 \cdot$ nm with a molar absorptivity of $1 \cdot 0 \times 1 \cdot 1 \cdot 1 \text{ Lmol}^{-1} \cdot \text{cm}^{-1}$. Beer's law was obeyed over the concentration range of $\cdot .1 - 1 \le \mu \text{g/mL}$. A relative standard deviation of the method was less than $\cdot .0\%$ and the recoveries were obtained in the range of $1 \cdot .1 \cdot 0\%$.

Conclusion: The method does not require either temperature control or solvent extraction, the composition of the coloured product and common excipients on spectrophotometric properties were studied. The proposed method has successfully applied for the determination of metoclopramide in pure and pharmaceutical formulations. The additives did not interfere in this method.

Keywords: Spectrophotometric assay, metoclopramide hydrochloride.


الخلاصة

الهدف: يشمل هذا البحث تطوير طريقة طيفية بسيطة وحساسة لتقدير هيدروكلوريد الميتوكلوبراميد في حالته النقية وفي بعض المستحضرات الصيدلانية. **المواد وطريق العمل:** تعتمد الطريقة على مفاعلة الميتوكلوبراميد مع الكاشف البروميثازين والعامل المؤكسد

ن-كلوروسكسيناميد في وسط حامضي (١. مولاري حامض الهيدروكلوريك). النتائج: تكونت صبغة بنفسجية حمراء ذائبة في الماء التي اعطت اعلى امتصاص عند طول موجي مقداره 610 نانوميتر بامتصاصية مولارية ٥. •× ¹ ١٠ لتر مول¹ بسم¹. تتبع الطريقة قانون بير لمدى من التراكيز تقع بين ١. - ١٤ مايكروغرام/مللتر. كان الانحراف القياسي النسبي للطريقة اقل من ٥. • % ومعدل الاسترجاعية تراوح بين %٥. ١٠ - ٩٨.

الاستنتاج: الطريقة المقترحة لاتحتاج الى السيطرة على درجات الحرارة او الاستخلاص بالمذيب، تمت دراسة طيفية وتركيب الصبغة والمتداخلات، وطبقت الطريقة المقترحة بنجاح في تقدير الميتوكلوبراميد في حالته النقية وفي بعض مستحضراته الصيدلانية. كما وجد ان لاتاثير للمضافات الدوائية في الطريقة المقترحة.

M etoclopramide hydrochloride (MCP), is the monohydrate ^εamino-°-chloro-N-(^γdiethylaminoethyl) -^γ-methoxybenzamide'. Metoclopramide is the active ingredient of many pharmaceutical preparations, which

It was considered as dopamine receptor antagonsit[°]. It also has an antiemetic action on the central nervous system^t.

Many analytical methods have been developed for the determination MCP, most of of them are spectrophotometric based on oxidative coupling reaction^{°,}, charge-transfer complex formation^v, redox reaction[^], or through formation of the Schiff's base with p-dimethylamine cinamaldehyde¹. Other methods based on fluorimetric', or on diazotization and coupling with different coupling agents such as dibenzoyl methan'', benzoyl-acetone", aniline["], βnaphthol^{'f}. Some of methods based on flow injection-chemiluminescent'°, on capillary electrophoresis', voltammetry'', H'NMR spectro-scopy'', and chromate-graphic technique^{19-Y1}. The above methods are time consuming", heat dependent', unselective', and not suitable for routine analysis. The British pharmacopoeia reported a potentiometric method using perchloric acid solution for the determination of MCP powder and a UV method for ampoules'. tablets and The potentiometric method requires about $\gamma \circ \cdot$ mg of drug, where as the UV ethod is liable to interferences from tablets excipients, and requires preextraction with chloroform. These difficulties have encourage the researchers to develop a simple, selective, sensitive and inexpensive method for the analysis of the studied drug.

The present work describes the application of N-chlorosuccinamide as an inexpensive new oxidant reagent

with promethazine agent for the determination of MCP in both pure form and in pharmaceutical preparations.

Experimental Apparatus

The absorption spectra were recorded on a double-beam Shimadzu UV-Visible recording spectrophotometer UV-17, with 1., cm matched silica cells. The absorbance measurements were obtained using double-beam SOHZ 97, spectrophotometer with 1 cm quartze cells. PH measurements were performed using Philips PW $9\xi7$, pH meter.

Reagents

All chemical used were of analyticalreagent grade. MCP ($\cdots \mu g / ml$) solution. MCP powder was provided from Ninavah drug industry (NDI). It was prepared by dissolving \cdots g of MCP in distilled water and the volume was completed to \cdots ml with distilled water in a volumetric flask. The solution was then transferred to an opaque bottle and it was stable for at least one month. Working solution of MCP was prepared by appropriate dilution of the stock solution with distilled water.

Promethazine (•.1%) solution

It was prepared by dissolving •.' g of promethazine reagent (Hopkins and Williams) in `•• ml distilled water.

N-Chlorosuccinamide (NCS ·. \%): This solution was prepared by dissolving \.•g of NCS (BDH) in \•• ml distilled water. Hydrochloric acid (Thomas Baker). Solutions of \M NaOH is also prepared.

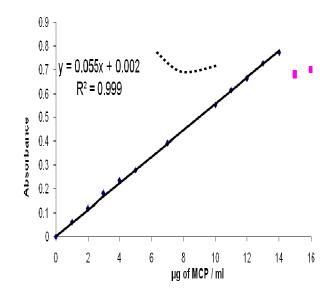


Figure 1. Calibration curve for MCP determination

General procedure

Different volumes of standard solutions ($1 \cdot -$ and $\circ \cdot \mu g/mL$) were transferred into a series of $1 \cdot mL$ volumetric flasks. $T \cdot$ each flask, $\cdot \cdot \circ$ mL of $\cdot .1N$ HCl acid, $7 \cdot \circ mL$ of $\cdot .1\%$ promethazine were added. The mixture is diluted to volume with distilled water, and allowed standing for \circ min. The absorbance is measured at $71 \cdot nm$ against a reagent blank.

Analysis of pharmaceutical preparations

At least ten tablets (\circ mg MCP-HCl/tablet) were weighed, powdered and mixed well. A portion equivalent to \cdot . \cdot) g is weighed and dissolved in $\circ \cdot$ ml of distilled water, shaken well, filtered and diluted with water to $\cdot \cdot \cdot$ ml in a volumetric flask. An aliquot of the diluted drug solution is then treated as mentioned in the recommended procedure.

The content of MCP syrup (° mg MCP HCl/° mL) is mixed well and ^Y ml of the syrup was quantitatively transferred into ^Y·· ml volumetric flask and completed to the mark with distilled water. An aliquot of the drug (^Y·· ppm) and its diluted (^Y· ppm) solution are then treated as mention in the recommended procedure.

An accurate volume 1.0 ml of MCP drops (1 mg MCP HCl/ml) is transferred into a 1.1 ml volumetric flask and completed to the mark with distilled water, then it is proceeded as the recommended procedure.

Results and discussion

Under the reaction conditions, the formation of the product probably occurs as follows (Scheme ¹).

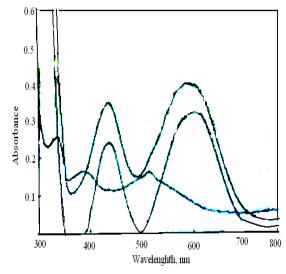


Fig ^γ. Absorption spectra of ^γ·· μg of MCP/^γ· ml measured against (A) blank, (B) distilled water, and (C) blank measured against distilled water.

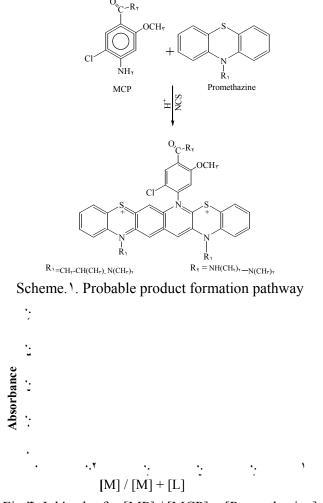
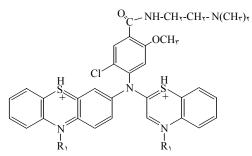


Fig ^r. Job's plot for [MP] / [MCP] + [Promethazine]

The effect of pH on the sensitivity of the product is examined. Only pH \mathcal{T} . \mathcal{T} (•.) N hydrochloric acid) is found to be optimum. The effect of the amount of \cdot . N hydrochloric acid is also investigated and \cdot . ml is found to be the most suitable effect on the intensity with corresponding low reagent blank absorbance. Different amount of various acids such as HCl, CHrCOOH, HNOr, HrSO: have been tried for the producing intense coloured products and alower blank value to obtain high variance value between the absorbance of sample against blank.

The oxidative coupling reaction was carried out in the presence of various oxidizing agents cerium (IV) sulphate, potassium dichromate, potassium iodate, and Nchlorosuccinimide (NCS). The experimental data revealed that NCS was the most suitable oxidizing agent.

The amount of NCS solution $(\cdot, 1\%)$ for maximal colour intensity was examined. The maximum colour intensity was reached when $(1, \circ, \tau, \cdot)$ ml were used. However ⁷.° ml of NCS solution was selected because it gives the most suitable effect on the intensity coloured product of the with corresponding low reagent blank absorbance.


The effect of surfactant addition to the reaction mixture was studied. In this respect sodium dodecyl sulfate (SDS), (anionic surfactant), cetyltrimethyl-ammonium bromide (CTAB), (Cationic surfactant) andtriton x- \cdot ·· (non-ionic surfactant) have been introduced. The results indicated that addition of surfactants gave no useful effect, therefore, it was omitted in this study.

The effect of temperature on the intensity of the coloured product was studied. In practice the absorbance was decreased when the coloured is developed at °C or when the calibrated flask is placed in a water-bath at $\stackrel{\epsilon}{\cdot}$, $\stackrel{\circ}{\cdot}$, $\stackrel{\vee}{\cdot}$, $\stackrel{\wedge}{\cdot}$ and $\stackrel{\vee}{\cdot}$ °C. Therefore, it is recommended to proceed the reaction at room temperature $\stackrel{\vee}{\cdot}$ °C.

To obtain optimum results, the order of addition of reagents should followed as the procedure cited above, otherwise a loss in coloured intensity was observed.

To test the effect of time on the absorbance of the colour product at the wavelength of maximum absorption at *i*, nm, the coloured product has been prepared from different amounts of MCP under the optimal experimental conditions, and the absorbance were measured at different intervals of time up to ^Yhr. The experimental results showed that the colour product developed immediately and the absorbance remains maximum and constant for at least 9. minutes.

The stoichiometry of the reaction between MCP and promethazine was investigated using continuous (Job's method). Figure r were indicated that the product was formed in ratio of 1:7.

Red-violet coloured product $R_1 = CH_{\gamma} - CH(CH_{\gamma}) - N(CH_{\gamma})_{\gamma}$

The results indicate that the coloured product was formed as the following structure¹.

Accuracy and precision

To check the accuracy and precision of the calibration graph, MCP was determined at three different concentrations. The results are shown in Table \uparrow indicated that the method is satisfactory.

Effect of organic solvents

Different organic solvents are examined to evaluate their effects on the spectrum of the resulting coloured product and the data are shown in Table Υ .

Table \. Accuracy and precision of the calibration graph

Amount of MCP taken, µg/ml	Recovery % *	Relative standard deviation, % *
۲	1.1.0	± •.º• ٤
0	٩٨٠	±•.٤٤٧
١.	1.1.7	±•.٣١٦

*Average of five determinations

Table ⁷. Different organic solvents and their effects on the spectrum

Solvent	Colou	λ max,		ε l.mol ⁻ '.cm ⁻ '	
Solvent	Sample	nple Blank (nm)	(nm)	e i.iiior .ciii	
Acetic acid	Red-violet	Pale pink	٦١.	•.1 × 1• ^r	
Acetone	Red-violet	Pale pink	718	•.11 × 1• ^r	
۱,٤-Dioxane	Pale red-violet	Pale pink	710	۰.٤ × ۱۰ ^۳	
Ethanol	Pale red-violet	Pale pink	718	\cdot \vee \times \cdot r	
Methanol	Red-violet	Pale pink	718	•.1 × 1•*	
n-Butanol	Pale pink	Pale pink	210	•.1 × 1• ^r	
Water	Red-violet	Pale pink	٦١.	$Y_{\cdot} \cdot \circ \times 1 \cdot {}^{\sharp}$	

Water is still chosen in the subsequent experiment of availability, non-toxicity and cheap as well as being a suitable medium from the sensitivity point of view.

Effect of interferences

In order to test the efficiency and selectivity of the proposed analytical method, application of some foreign substances (e.g. acacia, glucose, starch and lactose), that usually present in dosage forms were studied by adding amounts of foreign substances to `.. μ g MCP/ \cdot mL The colour was developed following the procedure described ealier. It was observed that the studied foreign species did not interfere in the present method Table \tilde{r} .

Application of the method

The proposed method was successfully applied to the determination of MCP-HCl in its pharmaceutical preparations (tablet, syrup and drop). The results are shown in Table ϵ indicated that a good recovery was obtained.

Interferences	Recovery(%) of `` µg MCP / µg of interfere of added			
Interferences	۱۰۰	0	۱۰۰۰	
Acacia	٩٨٨	٩٧.٢	٩٦.٤	
Glucose	٩٥.٧	٩٦_٨	۱۰۰٫٦	
Lactose	95.0	٩٨.٤	٩٤.٢	
Starch	٩٤.٤	٩٥.٨	۱۰۰.۲	

Table \mathcal{V} . Effect of additives and excipients on the determination of $\mathcal{V} \cdot \mathcal{V}$ µg of MCP

Table [£]. Analytical applications

	Recovery(%) of MCP*		
MCP amount,	MCP-HCl	MCP-HCl	MCP-HCl
μg	(°mg/ tablet)	syrup (°mg/°ml)	drops (٤mg/ml)
	NDI-Iraq	NDI-Iraq	NDI-Iraq
١.	٩٥.٨	۱.٣.	1.7.0
٥,	٩٥	90.7	٩٧.٠
۱	99.0	٩٧٥	٩٩ ٧

* Average of five determinations.

.

The performance of the proposed method was assessed by calculating the student's t-test and F-test compared with the literature method 3 . The results in Table \circ show that the calculated value of t and F did not exceed the theoretical values at the 9 % confidence level for five degrees of freedom indicating that there is no

significant difference between the proposed method and the literature method.

Comparison of the method

Table 7 shows the comparison betweensomeanalytical variablespresentmethod with these of recentspectrophotometricmethods.

rable . Determination of metoelopramide in pharmaceutear preparations			
	Pharmaceutical	Recovery * %	
Drug	preparation	Present method	Literature method ¹
	amount	Tresent method	
MCP HCl	Tablet	99.0±•.0	
(°mg/ tablet)	Tablet	t = 7.7	۹۸.• ± ۲.•
SDI, Iraq		$F = \cdot . $ $\cdot \cdot$	
MCP-HCl	Symun	$\cdots \vee + \cdots \vee$	
(°mg/°ml)	Syrup	t = 1.5	いいて ± いて
SDI, Iraq		$F = \cdot VV$	
MCP-HCl	Drag	いい で_り ± で_り	
(٤mg/ml)	Drop	t = 1.09	۰.۲ _. ۰ ± ۲ _. ۰
NDI, Iraq		$F = \cdot \cdot \cdot \cdot \lambda$	

Table °. Determination of metoclopramide in pharmaceutical preparations

* Average of five determinations.

Table	٦	Com	parison	of the	methods
1 4010	•	COIII	purison	or the	methous

Analytical parameters	Present method	Literature method [°]	
Coupling condition	Acidic medium	Acidic medium	
$\lambda \max(nm)$	7).	717	
Reagent	Promethazine	Phenothiazine	
Type of method	Oxidative coupling	Oxidative coupling	
Oxidizing reagent	N-chlorsuccinimide	Sodiummetaperiodate	
Beer's law range, ppm	• <u>1</u> 11	۰ <u>.</u> ۱_۱٦	
Molar absorptivity , l.mol ^{-'} .cm ^{-'}	•.º×1•*	1.70×1.*	
Application of the method	Tablets, syrup and drops	Tablets	
Error %	-7 -•	+1.90	

Conclusion

The developed spectrophotometric method for the assay of MCP is simple. sensitive. selective. inexpensive and exhibits a fair degree of precision and accuracy. The method does not involve any critical reaction conditions and can be compared favorably with other existing methods. The proposed method does not require neither temperature control nor solvent extraction step and it can be applied successfully for the determination of drug in tablets, syrup and drop.

References

- British pharmacopoeia, CD ROM, ^{γrd} ed. System Simulation Ltd, Stationary office, London ^γ···.
- Y. Alexander RL, Seringry DJ. Comparison of andansetron, metocloprimde and placebo premedicants to reduce nausea and vomiting after major surgery. 199V;oY(V):T90-A.
- ۲. Chochen B, Sanger DJ, Perrault G. Metoclopramide-Drugs and treatment, J.Pharmacol.Exp.Ther ۱۹۹۷:۲۸۳: ٥٦٦-٧٠.
- ٤. Roila F. Metoclopromide is drug commonly used for management of vomiting and gastromtestinal disorders in dogs and cats. Tumori וואסא,אניסד-ע.
- Al-Talib SM, Mohammed SA. Spectrophotometric assay of metoclopra-mide via oxidative coupling with phenothiazine and sodium metaperiodate. J Edu. Sci 1997;1Λ(ξ):17-۲۲.
- N. Ahmed
 N
 R,
 Ali
 NM

 .Spectrophotometric
 determination

of metoclopramide in some pharmaceutical preparation via oxidative coupling reagent. J Edu Sci $\Upsilon \cdot \cdot \Im ; \Im \wedge (\pounds) : \Im \neg \Upsilon \Upsilon$.

- Y. Al-Ghabsha TS, Ahmed R A, Mahmood HS. Spectrophotometric study of some drugs using ⁷,^r-dichloro-^o-⁷-dicyano-pbenzoquinon (DDQ). J Edu Sci ⁷...²;¹¹(¹):²7-^o^r.
- Amin AS, Ragab GH . Spectrophotometric methods for the determination of anti-emetic drugs in bulk and in pharmaceutical preparations, Anal Sci Y •• Y; 19: Y ٤ Y-01.
- Noussa BA. Determination of some aminobenzoic acid derivatives glafenine and metoclopramide. J Pharm Biomed Anal Y···;YY(T): Y·20-00.
- Y. Attia MS, Aboaly MM. Highly sensitive and selective spectrophotometric determination of metoclopramide hydrochloride in pharmaceutical tablets and serum samples using Eu^{r+} ion doped in sol-gel matrix. Talanta Y.Y.; AT(Y): YA-A£.
- N. Revanasiddappa HD, Manju BA. Spectrophotometric method for the determination of metoclopramide hydrochloride and dapsone. J Pharm Biomed Anal Y···);Yo(Y-£):TY)-TY.
- Y. Omran AA. Individual and simultaneous spectropho-tometric determination of dapsone and metoclopramide HCl in pharmaceutical dosage forms and synthetic binary mixtures. Chem

- ۱۳. Shah J, Rasul JM, Azam KM, Amin S. Spectrophotometric determination of metoclopramide in pharmaceutical preparations. J Anal Chem ۲۰۰۰; ٦۰(٧): ٦٣٣-٥.
- Yé. Patel SA, Patel CN, Patel MM. Visible spectrophotometric methods for the estimation of metoclopramide HCl in tablets. Indian J Pharm Sci Y··٦;٦٨(٣):٣٩٧-٩.
- 1° . Al-ArfajNA.Flow-injectionchemiluminescent determination of
metoclo-pramide hydrochloride in
pharmaceutical formulations and
biological fluids using the
 $[Ru(dipy)r]^{Y+}$ permanganate
system. Talanta $Y \cdot \cdot \xi; TY(Y): Y \circ \circ -$
TY.
- N. Kaowen Z, Xumel G, Xiaochao C, Xiaocui C. Determination of metoclopramide in dog plasma by capillary electrophoresis with electrochemiluminescence. Acta Chimica Sinica Y. 11; 79(Y): 771-0.
- Y. Farghaly OA, Taher MA, Naggar A H, El-Sayed A Y, Square wave anodic stripping voltammetric determination of metoclopramide in tablet and urine at carbon paste

electrode. J Pharm Biomed Anal $\gamma \cdot \cdot \circ_{\gamma} \gamma \wedge (\gamma) : \gamma \in \gamma \cdot$.

- ¹^A. Hanna GM, Lau-Cam CA. H¹ NMR spectroscopy assay method for metoclopramide in tablets and injections. Drug Der Ind Pharm $1991; 1V(Y): 9Yo-A\xi$.
- 19. Radwan MA. Determination of metoclopramide in serum by HPLC assay and its application to pharmacolcinetic study in rat. Anal Lett 1994; (12): (12): (14).
- Y. Cossa M, Sanna V, Gavini E, et al. Anew sensitive reversed phase chromatography method for the quantitative determination of metoclopramide in canine plasma. Anal Lett Y...A; (0): YIY-YA.
- Y). Shaabani N, Adergani BA. Novel molecularly imprinted polymers for the selective extraction and determination of metoclopramide in human serum and urine samples using high performance liquid chromatography. J Chromatogr. B Y...9; AVV(Y1):Y0TV-11.