Document Type : Review Paper


1 College of Pharmacy, Mosul University, Mosul, Iraq

2 Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul, Iraq

3 Department of Clinical Lab Sciences, College of Pharmacy, University of Mosul, Mosul, Iraq.


Background: The prevention of drug-induced cardiotoxicity is a complicated challenge facing healthcare providers during the last few decades. This challenge is raised from the unclear definition of the term “cardiotoxicity”, the overlapping of the symptoms of heart dysfunction due to the underlying diseases and the used drugs or using a combination of drugs which makes it difficult to distinguish between the side effects of each drug. Objective: This review discusses the most causative agents of cardiotoxicity, and their mechanisms to induce cardiac muscle damage, and finally focuses on the most applicable methods to deal with these dangerous heart problems. Methods: The search method involved electronic databases, including PubMed, Web of Science, Springer, Google Scholar, and others to resume relevant trials of heart disease published in the period between 2010-2023. Conclusion: Cardiotoxicity is a common substantial adverse effect of many drugs including anticancer drugs and others. The prevention methods may include medications, such as (Enalapril or carvedilol), supplementation with antioxidants, or cardioprotective natural products.


  • Cardiotoxicity is a serious adverse effect affecting the heart resulting from many drugs, especially anticancer drugs.
  • The mechanism of cardiotoxicity involves reactive oxygen species formation, depletion of antioxidants, and mitochondrial damage.
  • Prevention of drug-induced cardiotoxicity requires the use of drugs (enalapril, carvedilol), natural products, and antioxidants.


Main Subjects

  1. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anticancer drugs: The need for cardio-oncology and cardio-oncological prevention. Journal of the National Cancer Institute 2010; 102(1): 14–25.
  2. Varga Z V., Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. American Journal of Physiology - Heart and Circulatory Physiology 2015; 309(9): H1453–H1467.
  3. Mamoshina P, Rodriguez B, Bueno-Orovio A. Toward a broader view of mechanisms of drug cardiotoxicity. Cell Reports Medicine 2021; 2(3): 100–216.
  4. Ma W, Wei S, Zhang B, Li W. Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Frontiers in Cell and Developmental Biology 2020; 8(June): 1–17.
  5. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popović ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: Application to patients undergoing cancer chemotherapy. Journal of the American College of Cardiology 2013; 61(1): 77–84.
  6. Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine 2012; 18(11): 1639–1642.
  7. Smith LA, Cornelius VR, Plummer CJ, Levitt G, Verrill M, Canney P, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: Systematic review and meta-analysis of randomised controlled trials. BMC Cancer 2010; 10(1): 337.
  8. Kourek C, Touloupaki M, Rempakos A, Loritis K, Tsougkos E, Paraskevaidis I, et al. Cardioprotective Strategies from Cardiotoxicity in Cancer Patients: A Comprehensive Review. Journal of Cardiovascular Development and Disease 2022; 9(8): 259.
  9. Dicato MA. Side Effects of Medical Cancer Therapy: Prevention and Treatment. 2013.
  10. Chung R, Ghosh AK, Banerjee A. Cardiotoxicity: Precision medicine with imprecise definitions. Open Heart 2018; 5(2): 1–4.
  11. Marano G, Traversi G, Romagnoli E, Catalano V, Lotrionte M, Abbate A, et al. Cardiologic side effects of psychotropic drugs. Journal of Geriatric Cardiology 2011; 8(4): 243–253.
  12. Kelleni MT, Abdelbasset M. Drug Induced Cardiotoxicity: Mechanism, Prevention and Management. Cardiotoxicity 2018.
  13. Truong J, Yan AT, Cramarossa G, Chan KKW. Chemotherapy-induced cardiotoxicity: Detection, prevention, and management. Canadian Journal of Cardiology 2014; 30(8): 869–878.
  14. Caspani F, Tralongo AC, Campiotti L, Asteggiano R, Guasti L, Squizzato A. Prevention of anthracycline-induced cardiotoxicity: a systematic review and meta-analysis. Internal and Emergency Medicine 2021; 16: 477–486.
  15. Cadeddu Dessalvi C, Deidda M, Noto A, Madeddu C, Cugusi L, Santoro C, et al. Antioxidant approach as a cardioprotective strategy in chemotherapy-induced cardiotoxicity. Antioxidants & Redox Signaling 2021; 34(7): 572–588.
  16. Othman SNN, Lum PT, Gan SH, Mani S, Sekar M. Protective effect of natural products against chemotherapy-induced cardiotoxicity: a review 2020.
  17. Novo G, Cadeddu C, Sucato V, Pagliaro P, Romano S, Tocchetti CG, et al. Role of biomarkers in monitoring antiblastic cardiotoxicity. Journal of Cardiovascular Medicine 2016; 17: S27–S34.
  18. Varricchi G, Ameri P, Cadeddu C, Ghigo A, Madonna R, Marone G, et al. Antineoplastic drug-induced cardiotoxicity: A redox perspective. Frontiers in Physiology 2018; 9(MAR): 167.
  19. McGowan J V., Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovascular Drugs and Therapy 2017; 31(1): 63–75.
  20. Cadeddu C, Mercurio V, Spallarossa P, Nodari S, Triggiani M, Monte I, et al. Preventing antiblastic drug-related cardiomyopathy: Old and new therapeutic strategies. Journal of Cardiovascular Medicine 2016; 17: S64–S75.
  21. Dhingra R, Margulets V, Chowdhury SR, Thliveris J, Jassal D, Fernyhough P, et al. Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proceedings of the National Academy of Sciences of the United States of America 2014; 111(51): E5537–E5544.
  22. Štěrba M, Popelová O, Vávrová A, Jirkovský E, Kovaříková P, Geršl V, et al. Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxidants and Redox Signaling 2013; 18(8): 899–929.
  23. Massart J, Borgne-Sanchez A, Fromenty B. Drug-induced mitochondrial toxicity. In: Oliveira PJ, editor. Mitochondrial Biology and Experimental Therapeutics, Cham: Springer International Publishing; 2018.
  24. Lipshultz SE, Diamond MB, Franco VI, Aggarwal S, Leger K, Santos MV, et al. Managing Chemotherapy-Related Cardiotoxicity in Survivors of Childhood Cancers. Pediatric Drugs 2014; 16(5): 373–389.
  25. Udagawa C, Nakamura H, Ohnishi H, Tamura K, Shimoi T, Yoshida M, et al. Whole exome sequencing to identify genetic markers for trastuzumab-induced cardiotoxicity. Cancer Science 2018; 109(2): 446–452.
  26. Sawicki KT, Sala V, Prever L, Hirsch E, Ardehali H, Ghigo A. Preventing and Treating Anthracycline Cardiotoxicity: New Insights. Annual Review of Pharmacology and Toxicology 2021; 61(1): 309–332.
  27. Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early Detection of Anthracycline Cardiotoxicity and Improvement With Heart Failure Therapy. Circulation 2015; 131(22): 1981–1988.
  28. Abdel-Qadir H, Ong G, Fazelzad R, Amir E, Lee DS, Thavendiranathan P, et al. Interventions for preventing cardiomyopathy due to anthracyclines: a Bayesian network meta-analysis. Annals of Oncology 2017; 28(3): 628–633.
  29. Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Scientific Reports 2017; 7: 44735.
  30. Zhang C, Xu C, Gao X, Yao Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 2022; 12(5): 2115–2132.
  31. Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: A systematic review of incidence, manifestations and predisposing factors. Cancer Treatment Reviews 2013; 39(8): 974–984.
  32. Ma H, Jones KR, Guo R, Xu P, Shen Y, Ren J. Cisplatin compromises myocardial contractile function and mitochondrial ultrastructure: Role of endoplasmic reticulum stress. Clinical and Experimental Pharmacology and Physiology 2010; 37(4): 460–465.
  33. Behnisch-Cornwell S, Wolff L, Bednarski PJ. The effect of glutathione peroxidase-1 knockout on anticancer drug sensitivities and reactive oxygen species in haploid HAP-1 cells. Antioxidants 2020; 9(12): 1–16.
  34. Wang SH, Tsai KL, Chou WC, Cheng HC, Huang YT, Ou HC, et al. Quercetin mitigates cisplatin-induced oxidative damage and apoptosis in cardiomyocytes through Nrf2/HO-1 signaling pathway. The American Journal of Chinese Medicine 2022; 50(05): 1281–1298.
  35. El kiki SM, Omran MM, Mansour HH, Hasan HF. Metformin and/or low dose radiation reduces cardiotoxicity and apoptosis induced by cyclophosphamide through SIRT-1/SOD and BAX/Bcl-2 pathways in rats. Molecular Biology Reports 2020; 47(7): 5115–5126.
  36. Murbraech K, Wethal T, Smeland KB, Holte H, Loge JH, Holte E, et al. Valvular Dysfunction in Lymphoma Survivors Treated with Autologous Stem Cell Transplantation A National Cross-Sectional Study. JACC: Cardiovascular Imaging 2016; 9(3): 230–239.
  37. Lanier GM, Garg J, Shah N. Cardiotoxicity of chemotherapeutic agents. Cardiotoxicity of Chemotherapeutic Agents 2017; 22(4): 1–214.
  38. Meserve EE, Lehmann LE, Perez-Atayde AR, Labelle JL. Cyclophosphamide-associated cardiotoxicity in a child after stem cell transplantation for b-thalassemia major: Case report and review of the literature. Pediatric and Developmental Pathology 2014; 17(1): 50–54.
  39. Polk A, Shahmarvand N, Vistisen K, Vaage-Nilsen M, Larsen FO, Schou M, et al. Incidence and risk factors for capecitabine-induced symptomatic cardiotoxicity: A retrospective study of 452 consecutive patients with metastatic breast cancer. BMJ Open 2016; 6(10): e012798.
  40. Shiga T, Hiraide M. Cardiotoxicities of 5-Fluorouracil and Other Fluoropyrimidines. Current Treatment Options in Oncology 2020; 21(4): 1–21.
  41. Zerna C, Guenther M, Folprecht G, Puetz V. Acute ischaemic stroke and myocardial infarction after chemotherapy with vinorelbine for non-small cell lung cancer: a case report. Journal of Chemotherapy 2017; 29(1): 49–53.
  42. Herrmann J, Yang EH, Iliescu CA, Cilingiroglu M, Charitakis K, Hakeem A, et al. Vascular toxicities of cancer therapies: The old and the new - An evolving avenue. Circulation 2016; 133(13): 1272–1289.
  43. Bouwer NI, Jager A, Liesting C, Kofflard MJM, Brugts JJ, Kitzen JJEM, et al. Cardiac monitoring in HER2-positive patients on trastuzumab treatment: A review and implications for clinical practice. Breast 2020; 52(5): 33–44.
  44. Li W, Croce K, Steensma DP, McDermott DF, Ben-Yehuda O, Moslehi J. Vascular and Metabolic Implications of Novel Targeted Cancer Therapies: Focus on Kinase Inhibitors. Journal of the American College of Cardiology 2015; 66(10): 1160–1178.
  45. Chiba K, Kambayashi R, Onozato M, Goto A, Izumi-Nakaseko H, Takei Y, et al. Imatinib induces diastolic dysfunction and ventricular early-repolarization delay in the halothane-anesthetized dogs: Class effects of tyrosine kinase inhibitors. Journal of Pharmacological Sciences 2022; 150(3): 154–162.
  46. Kridis W Ben, Masmoudi S, Charfeddine S Ben, Khanfir A. Sunitinib-Induced Congestive Heart Failure in a Patient with Gastrointestinal Stromal Tumor. Archives of Iranian Medicine 2022; 25(6): 399–401.
  47. Sandhu H, Maddock H. Molecular basis of cancer-therapy-induced cardiotoxicity: Introducing microRNA biomarkers for early assessment of subclinical myocardial injury. Clinical Science 2014; 126(5): 377–400.
  48. Kurauchi K, Nishikawa T, Miyahara E, Okamoto Y, Kawano Y. Role of metabolites of cyclophosphamide in cardiotoxicity. BMC Research Notes 2017; 10(1): 1–10.
  49. Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, et al. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sciences 2019; 218(1): 112–131.
  50. Gianazza E, Brioschi M, Martinez Fernandez A, Casalnuovo F, Altomare A, Aldini G, et al. Lipid peroxidation in atherosclerotic cardiovascular diseases. Antioxidants & Redox Signaling 2021; 34(1): 49–98.
  51. Ayza MA, Zewdie KA, Tesfaye BA, Wondafrash DZ, Berhe AH. The Role of Antioxidants in Ameliorating Cyclophosphamide-Induced Cardiotoxicity. Oxidative Medicine and Cellular Longevity 2020; 2020.
  52. Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, et al. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA: A Cancer Journal for Clinicians 2016; 66(4): 309–325.
  53. Zhou H, Liu L, Ma X, Wang J, Yang J, Zhou X, et al. RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage. Molecular and Cellular Biochemistry 2021; 476(2): 1233–1243.
  54. Lennon AS, Norales G, Armstrong MB. Cardiac arrest and possible seizure activity after vincristine injection. American Journal of Health-System Pharmacy 2012; 69(16): 1394–1397.
  55. Safarpour S, Safarpour S, Pirzadeh M, Moghadamnia AA, Ebrahimpour A, Shirafkan F, et al. Colchicine Ameliorates 5-Fluorouracil-Induced Cardiotoxicity in Rats. Oxidative Medicine and Cellular Longevity 2022; 2022.
  56. Zhang D, Ma J. Mitochondrial dynamics in rat heart induced by 5-fluorouracil. Medical Science Monitor 2018; 24(5): 6666–6672.
  57. Stewart T, Pavlakis N, Ward M. Cardiotoxicity with 5-fluorouracil and capecitabine: More than just vasospastic angina. Internal Medicine Journal 2010; 40(4): 303–307.
  58. Çalik AN, Çeliker E, Velibey Y, Çaǧdaş M, Güzelburç Ö. Initial dose effect of 5-fluorouracil: Rapidly improving severe, acute toxic myopericarditis. American Journal of Emergency Medicine 2012; 30(1): 257.e1-257.e3.
  59. Deveci HA, Nazıroğlu M, Nur G. 5-Fluorouracil-induced mitochondrial oxidative cytotoxicity and apoptosis are increased in MCF-7 human breast cancer cells by TRPV1 channel activation but not Hypericum perforatum treatment. Molecular and Cellular Biochemistry 2018; 439(1–2): 189–198.
  60. Polk A, Vistisen K, Vaage-Nilsen M, Nielsen DL. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacology and Toxicology 2014; 15(1): 47.
  61. Sara JD, Kaur J, Khodadadi R, Rehman M, Lobo R, Chakrabarti S, et al. 5-Fluorouracil and Cardiotoxicity: a Review. Therapeutic Advances in Medical Oncology 2018; 10.
  62. Mir A, Badi Y, Bugazia S, Nourelden AZ, Fathallah AH, Ragab KM, et al. Efficacy and safety of cardioprotective drugs in chemotherapy-induced cardiotoxicity: an updated systematic review & network meta-analysis. Cardio-Oncology 2023; 9(1): 1–34.
  63. Syahputra RA, Harahap U, Dalimunthe A, Nasution MP, Satria D. The Role of Flavonoids as a Cardioprotective Strategy against Doxorubicin-Induced Cardiotoxicity: A Review. Molecules 2022; 27(4): 1320.
  64. Anjos M, Fontes-Oliveira M, Costa VM, Santos M, Ferreira R. An update of the molecular mechanisms underlying doxorubicin plus trastuzumab induced cardiotoxicity. Life Sciences 2021; 280: 119–760.
  65. CHEN Z, AI D. Cardiotoxicity associated with targeted cancer therapies. Molecular and Clinical Oncology 2016; 4(5): 675–681.
  66. Doherty KR, Talbert DR, Trusk PB, Moran DM, Shell SA, Bacus S. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types. Toxicology and Applied Pharmacology 2015; 285(1): 51–60.
  67. Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. Journal of Clinical Oncology 2015; 33(35): 4210–4218.
  68. Baraka A, Abdelgawad H. Targeting apoptosis in the heart of streptozotocin-induced diabetic rats. Journal of Cardiovascular Pharmacology and Therapeutics 2010; 15(2): 175–181.
  69. Palee S, Weerateerangkul P, Chinda K, Chattipakorn SC, Chattipakorn N. Mechanisms responsible for beneficial and adverse effects of rosiglitazone in a rat model of acute cardiac ischaemia-reperfusion. Experimental Physiology 2013; 98(5): 1028–1037.
  70. Baranowski M, Blachnio A, Zabielski P, Gorski J. Pioglitazone induces de novo ceramide synthesis in the rat heart. Prostaglandins and Other Lipid Mediators 2007; 83(1–2): 99–111.
  71. Duarte C, Akkaoui J, Yamada C, Ho A, Mao C, Movila A. Elusive Roles of the Different Ceramidases in Human Health, Pathophysiology, and Tissue Regeneration. Cells 2020; 9(6): 1379.
  72. Rough K, Sun JW, Seage GR, Williams PL, Huybrechts KF, Bateman BT, et al. Zidovudine use in pregnancy and congenital malformations. Aids 2017; 31(12): 1733–1743.
  73. Sun R, Eriksson S, Wang L. Zidovudine induces downregulation of mitochondrial deoxynucleoside kinases: Implications for mitochondrial toxicity of antiviral nucleoside analogs. Antimicrobial Agents and Chemotherapy 2014; 58(11): 6758–6766.
  74. Adão R, De Keulenaer G, Leite-Moreira A, Braś-Silva C. Cardiotoxicity associated with cancer therapy: Pathophysiology and prevention strategies. Revista Portuguesa de Cardiologia 2013; 32(5): 395–409.
  75. Loeffen EAH, van Dalen EC, Mulder RL, van de Wetering MD, Kremer LCM, Tissing WJE. The duration of anthracycline infusion should be at least one hour in children with cancer: A clinical practice guideline. Pediatric Blood and Cancer 2018; 65(2): e26867.
  76. Meijers WC, de Boer RA. Common risk factors for heart failure and cancer. Cardiovascular Research 2019; 115(5): 844–853.
  77. Ederhy S, Cohen A, Dufaitre G, Izzedine H, Massard C, Meuleman C, et al. QT interval prolongation among patients treated with angiogenesis inhibitors. Targeted Oncology 2009; 4(2): 89–97.
  78. Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. European Heart Journal 2016; 37(36): 2768–2801.
  79. Li-Ling T, Lyon AR. Cardio-oncology for the general cardiologist. Heart 2021; 107(15): 1254–1266.
  80. Curigliano G, Cardinale D, Suter T, Plataniotis G, De azambuja E, Sandri MT, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Annals of Oncology 2012; 23(SUPPL. 7): vii155-66.
  81. Bansal N, Adams MJ, Ganatra S, Colan SD, Aggarwal S, Steiner R, et al. Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardio-Oncology 2019; 5(1): 18.
  82. Das B. Pharmacotherapy for Cancer Treatment-Related Cardiac Dysfunction and Heart Failure in Childhood Cancer Survivors. Pediatric Drugs 2023; 25(6): 695–707.
  83. Hadi T, Douhard R, Dias AMM, Wendremaire M, Pezzè M, Bardou M, et al. Beta3 adrenergic receptor stimulation in human macrophages inhibits NADPHoxidase activity and induces catalase expression via PPARγ activation. Biochimica et Biophysica Acta - Molecular Cell Research 2017; 1864(10): 1769–1784.
  84. Bhullar SK, Shah AK, Dhalla NS. Mechanisms for the Development of Heart Failure and Improvement of Cardiac Function by Angiotensin-Converting Enzyme Inhibitors. Scripta Medica (Banja Luka) 2022; 53(1): 51–76.
  85. Guglin M, Krischer J, Tamura R, Fink A, Bello-Matricaria L, McCaskill-Stevens W, et al. Randomized Trial of Lisinopril Versus Carvedilol to Prevent Trastuzumab Cardiotoxicity in Patients With Breast Cancer. Journal of the American College of Cardiology 2019; 73(22): 2859–2868.
  86. Cardinale D, Ciceri F, Latini R, Franzosi MG, Sandri MT, Civelli M, et al. Anthracycline-induced cardiotoxicity: A multicenter randomised trial comparing two strategies for guiding prevention with enalapril: The International CardioOncology Society-one trial. European Journal of Cancer 2018; 94: 126–137.
  87. Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-Induced Cardiomyopathy. Clinical Relevance and Response to Pharmacologic Therapy. Journal of the American College of Cardiology 2010; 55(3): 213–220.
  88. Graffagnino J, Kondapalli L, Arora G, Hawi R, Lenneman CG. Strategies to Prevent Cardiotoxicity. Current Treatment Options in Oncology 2020; 21(4).
  89. Heck SL, Mecinaj A, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of Cardiac Dysfunction during Adjuvant Breast Cancer Therapy (PRADA): Extended Follow-Up of a 2×2 Factorial, Randomized, Placebo-Controlled, Double-Blind Clinical Trial of Candesartan and Metoprolol. Circulation 2021; 143(25): 2431–2440.
  90. Gupta V, Kumar Singh S, Agrawal V, Bali Singh T. Role of ACE inhibitors in anthracycline-induced cardiotoxicity: A randomized, double-blind, placebo-controlled trial. Pediatric Blood and Cancer 2018; 65(11): e27308.
  91. Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR, das Dores Cruz F, Goncalves Brandao SM, Rigaud VOC, et al. Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. Journal of the American College of Cardiology 2018; 71(20): 2281–2290.
  92. Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M, et al. Protective effects of nebivolol against anthracycline-induced cardiomyopathy: A randomized control study. International Journal of Cardiology 2013; 167(5): 2306–2310.
  93. Radulescu D, Buzdugan E, Ciuleanu TE, Todor N, Stoicescu L. Can the epirubicin cardiotoxicity in cancer patients be prevented by angiotensin converting enzyme inhibitors? Journal of BUON 2013; 18(4): 1052–1057.
  94. Rizka A, Purwanto H, Budianto MB, Rohman MS. Role of angiotensin-converting enzyme inhibitors on changes in troponin levels in breast cancer with anthracycline chemotherapy. Bali Medical Journal 2021; 10(2): 728–732.
  95. Davis MK, Villa D, Tsang TSM, Starovoytov A, Gelmon K, Virani SA. Effect of Eplerenone on Diastolic Function in Women Receiving Anthracycline-Based Chemotherapy for Breast Cancer. JACC: CardioOncology 2019; 1(2): 295–298.
  96. Dessì M, Madeddu C, Piras A, Cadeddu C, Antoni G, Mercuro G, et al. Long-term, up to 18 months, protective effects of the angiotensin II receptor blocker telmisartan on Epirubin-induced inflammation and oxidative stress assessed by serial strain rate. SpringerPlus 2013; 2(1): 1–10.
  97. Georgakopoulos P, Kyriakidis M, Perpinia A, Karavidas A, Zimeras S, Mamalis N, et al. The Role of Metoprolol and Enalapril in the Prevention of Doxorubicin-induced Cardiotoxicity in Lymphoma Patients. Anticancer Research 2019; 39(10): 5703–5707.
  98. Oesterle A, Laufs U, Liao JK. Pleiotropic Effects of Statins on the Cardiovascular System. Circulation Research 2017; 120(1): 229–243.
  99. Davignon J. Pleiotropic effects of pitavastatin. British Journal of Clinical Pharmacology 2012; 73(4): 518–535.
  100. Tursunova N V, Klinnikova MG, Babenko OA, Lushnikova EL. Molecular Mechanisms of the Cardiotoxic Action of Anthracycline Antibiotics and Statin-Induced Cytoprotective Reactions of Cardiomyocytes. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry 2021; 15(2): 89–104.
  101. Chotenimitkhun R, D’Agostino R, Lawrence JA, Hamilton CA, Jordan JH, Vasu S, et al. Chronic Statin Administration May Attenuate Early Anthracycline-Associated Declines in Left Ventricular Ejection Function. Canadian Journal of Cardiology 2015; 31(3): 302–307.
  102. Akpek M, Ozdogru I, Sahin O, Inanc M, Dogan A, Yazici C, et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. European Journal of Heart Failure 2015; 17(1): 81–89.
  103. Asensio-López MC, Lax A, Pascual-Figal DA, Valdés M, Sánchez-Más J. Metformin protects against doxorubicin-induced cardiotoxicity: Involvement of the adiponectin cardiac system. Free Radical Biology and Medicine 2011; 51(10): 1861–1871.
  104. Ajzashokouhi AH, Bostan HB, Jomezadeh V, Hayes AW, Karimi G. A review on the cardioprotective mechanisms of metformin against doxorubicin. Human & Experimental Toxicology 2020; 39(3): 237–248.
  105. Peng L, Li X, Li Y, Zhao W, Nie S, Yu H, et al. Increased concentrations of myeloperoxidase in serum and serum extracellular vesicles are associated with type 2 diabetes mellitus. Clinica Chimica Acta 2021; 522: 70–76.
  106. Kobashigawa LC, Xu YC, Padbury JF, Tseng YT, Yano N. Metformin protects cardiomyocyte from doxorubicin induced cytotoxicity through an AMP-activated protein kinase dependent signaling pathway: An in Vitro study. PLoS ONE 2014; 9(8).
  107. Reichardt P, Tabone MD, Mora J, Morland B, Jones RL. Risk-benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: Re-evaluating the European labeling. Future Oncology 2018; 14(25): 2663–2676.
  108. Rahimi P, Barootkoob B, ElHashash A, Nair A. Efficacy of Dexrazoxane in Cardiac Protection in Pediatric Patients Treated With Anthracyclines. Cureus 2023; 15(4): 8–12.
  109. da Silva MC, Fabiano LC, da Costa Salomão KC, de Freitas PLZ, Neves CQ, Borges SC, et al. A Rodent Model of Human-Dose-Equivalent 5-Fluorouracil: Toxicity in the Liver, Kidneys, and Lungs. Antioxidants 2023; 12(5).
  110. Taleb A, Ahmad KA, Ihsan AU, Qu J, Lin NA, Hezam K, et al. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomedicine & Pharmacotherapy 2018; 102: 689–698.
  111. Colombo V, Lupi M, Falcetta F, Forestieri D, D’Incalci M, Ubezio P. Chemotherapeutic activity of silymarin combined with doxorubicin or paclitaxel in sensitive and multidrug-resistant colon cancer cells. Cancer Chemotherapy and Pharmacology 2011; 67(2): 369–379.
  112. Abed NA, Khalaf MM, Alnori MKJ. The Potential Effect of Silymarin Against Paracetamol-Induced Hepatotoxicity in Male Albino Rats. Pharmacognosy Journal 2022; 14(5): 558–564.
  113. Zalat Z, Kohaf N, Alm El-Din M, Elewa H, Abdel-Latif M. Silymarin: A promising cardioprotective agent. Azhar International Journal of Pharmaceutical and Medical Sciences 2021; 1(1): 15–23.
  114. Singh M, Kadhim MM, Turki Jalil A, Oudah SK, Aminov Z, Alsaikhan F, et al. A systematic review of the protective effects of silymarin/silibinin against doxorubicin-induced cardiotoxicity. Cancer Cell International 2023; 23(1): 88.
  115. Terahara N. Flavonoids in foods: A review. Natural Product Communications 2015; 10(3): 521–528.
  116. Agrawal AD. Pharmacological Activities of Flavonoids: A Review. International Journal of Pharmaceutical Sciences and Nanotechnology 2011; 4(2): 1394–1398.
  117. Serafini M, Peluso I, Raguzzini A. Flavonoids as anti-inflammatory agents. Proceedings of the Nutrition Society 2010; 69(3): 273–278.
  118. Kainama H, Fatmawati S, Santoso M, Papilaya PM, Ersam T. The Relationship of Free Radical Scavenging and Total Phenolic and Flavonoid Contents of Garcinia lasoar PAM. Pharmaceutical Chemistry Journal 2020; 53(12): 1151–1157.
  119. Vazhappilly CG, Ansari SA, Al-Jaleeli R, Al-Azawi AM, Ramadan WS, Menon V, et al. Role of flavonoids in thrombotic, cardiovascular, and inflammatory diseases. Inflammopharmacology 2019; 27(5): 863–869.
  120. Ojeda D, Jiménez-Ferrer E, Zamilpa A, Herrera-Arellano A, Tortoriello J, Alvarez L. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. Journal of Ethnopharmacology 2010; 127(1): 7–10.
  121. Luo Y, Shang P, Li D. Luteolin: A Flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Frontiers in Pharmacology 2017; 8(OCT): 1–10.
  122. Marlin S, Elya B, Katrin. Antioxidant activity and lipoxygenase enzyme inhibition assay with total flavonoid content from garcinia hombroniana pierre leaves. Pharmacognosy Journal 2017; 9(2): 267–272.
  123. Manzoor MF, Ahmad N, Ahmed Z, Siddique R, Zeng XA, Rahaman A, et al. Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives. Journal of Food Biochemistry 2019; 43(9): e12974.
  124. Xu H, Linn B, Zhang Y, Ren J. A Review on the Antioxidative and Prooxidative Properties of Luteolin. Reactive Oxygen Species 2019; 7(21 SE-REVIEW ARTICLES): 136–147.
  125. Ganai SA, Sheikh FA, Baba ZA, Mir MA, Mantoo MA, Yatoo MA. Anticancer activity of the plant flavonoid luteolin against preclinical models of various cancers and insights on different signalling mechanisms modulated. Phytotherapy Research 2021; 35(7): 3509–3532.
  126. Xu H, Yu W, Sun S, Li C, Zhang Y, Ren J. Luteolin attenuates doxorubicin-induced cardiotoxicity through promoting mitochondrial autophagy. Frontiers in Physiology 2020; 11: 113.
  127. Sun J, Wang Z, Chen L, Sun G. Hypolipidemic effects and preliminary mechanism of chrysanthemum flavonoids, its main components luteolin and luteoloside in hyperlipidemia rats. Antioxidants 2021; 10(8): 1309.
  128. Schaupp CM, White CC, Merrill GF, Kavanagh TJ. Metabolism of doxorubicin to the cardiotoxic metabolite doxorubicinol is increased in a mouse model of chronic glutathione deficiency: A potential role for carbonyl reductase 3. Chemico-Biological Interactions 2015; 234: 154–161.
  129. Ding X, Zheng L, Yang B, Wang X, Ying Y. Luteolin attenuates atherosclerosis via modulating signal transducer and activator of transcription 3-mediated inflammatory response. Drug Design, Development and Therapy 2019; 13: 3899–3911.
  130. Zhao L, Zhou Z, Zhu C, Fu Z, Yu D. Luteolin alleviates myocardial ischemia reperfusion injury in rats via Siti1/NLRP3/NF-κB pathway. International Immunopharmacology 2020; 85: 106680.
  131. Mirza MA, Mahmood S, Hilles AR, Ali A, Khan MZ, Zaidi SAA, et al. Quercetin as a Therapeutic Product: Evaluation of Its Pharmacological Action and Clinical Applications—A Review. Pharmaceuticals 2023; 16(11): 1631.
  132. Xu F, Li X, Xiao X, Liu L fang, Zhang L, Lin P ping, et al. Effects of Ganoderma lucidum polysaccharides against doxorubicin-induced cardiotoxicity. Biomedicine and Pharmacotherapy 2017; 95: 504–512.
  133. Chen JY, Hu RY, Chou HC. Quercetin-induced cardioprotection against doxorubicin cytotoxicity. Journal of Biomedical Science 2013; 20(1): 95.
  134. Dong Q, Chen L, Lu Q, Sharma S, Li L, Morimoto S, et al. Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. British Journal of Pharmacology 2014; 171(19): 4440–4454.
  135. Guo Z, Tang N, Liu FY, Yang Z, Ma SQ, An P, et al. TLR9 deficiency alleviates doxorubicin-induced cardiotoxicity via the regulation of autophagy. Journal of Cellular and Molecular Medicine 2020; 24(18): 10913–10923.
  136. Mantawy EM, El-Bakly WM, Esmat A, Badr AM, El-Demerdash E. Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. European Journal of Pharmacology 2014; 728(1): 107–118.
  137. Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018; 145: 187–196.
  138. Mantawy EM, Esmat A, El-Bakly WM, Salah Eldin RA, El-Demerdash E. Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53, MAPK and AKT pathways. Scientific Reports 2017; 7(1): 4795.
  139. Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, et al. Paradoxical roles of antioxidant enzymes: Basic mechanisms and health implications. Physiological Reviews 2015; 96(1): 307–364.
  140. R. Buettner G. Superoxide Dismutase in Redox Biology: The Roles of Superoxide and Hydrogen Peroxide. Anti-Cancer Agents in Medicinal Chemistry 2012; 11(4): 341–346.
  141. Rodrigo R, Prieto JC, Aguayo R, Ramos C, Puentes Á, Gajardo A, et al. Joint cardioprotective effect of vitamin c and other antioxidants against reperfusion injury in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Molecules 2021; 26(18).
  142. Anderson PM, Lalla R V. Glutamine for amelioration of radiation and chemotherapy associated mucositis during cancer therapy. Nutrients 2020; 12(6): 1675.
  143. Todorova VK, Kaufmann Y, Hennings L, Suzanne Klimberg V. Oral glutamine protects against acute doxorubicin-induced cardiotoxicity of tumor-bearing rats. Journal of Nutrition 2010; 140(1): 44–48.
  144. Niihara Y, Miller ST, Kanter J, Lanzkron S, Smith WR, Hsu LL, et al. A Phase 3 Trial of l -Glutamine in Sickle Cell Disease . New England Journal of Medicine 2018; 379(3): 226–235.
  145. Kalyanaraman B. Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biology 2020; 29(November 2019): 101394.
  146. Quagliariello V, Vecchione R, De Capua A, Lagreca E, Iaffaioli RV, Botti G, et al. Nano-Encapsulation of Coenzyme Q10 in Secondary and Tertiary Nano-Emulsions for Enhanced Cardioprotection and Hepatoprotection in Human Cardiomyocytes and Hepatocytes During Exposure to Anthracyclines and Trastuzumab. International Journal of Nanomedicine 2020; 15: 4859–4876.
  147. Khan NA, Abid M, Ahmad A, Abuzinadah MF, Basheikh M, Kishore K. Cardioprotective Effect of Coenzyme Q(10) on Apoptotic Myocardial Cell Death by Regulation of Bcl-2 Gene Expression. Journal of Pharmacology & Pharmacotherapeutics 2017; 8(3): 122–127.