Document Type : Review Paper


1 General Hospital, Salahh-ad-Din, Bayji, Kirkuk, Iraq

2 Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, University of Mosul, Mosul, Iraq


Background: Angiotensin-converting enzyme (ACE) Inhibitors are medications pivotal in cardiovascular disease management, impacting the renin-angiotensin system which plays a critical role in cardiovascular health. These inhibitors not only modulate blood pressure and fluid balance but also influence adipose-derived hormones like visfatin and apelin. These adipokines are intricately linked with cardiovascular function and interact with the renin-angiotensin system, thereby affecting cardiovascular disease outcomes. Understanding the interplay between ACE inhibitors, visfatin, and apelin is crucial for optimizing therapeutic strategies in cardiovascular disease management. Visfatin is primarily expressed in visceral adipose tissue and is associated with hypertension, vascular inflammation, and insulin resistance. Elevated serum levels of visfatin correlate with increased systolic and diastolic blood pressure. Apelin, acting through the G protein-coupled receptor APJ, is implicated in cardiac system diseases and can lower arterial blood pressure, improving cardiac output. Different apelin isoforms have varying efficacies in arterial pressure regulation. ACE inhibitors, widely prescribed for hypertension and heart failure, are found to modulate serum levels of apelin and visfatin, potentially augmenting their cardioprotective effects. Aim: This review article aims to elucidate the effects of angiotensin-converting enzyme (ACE) inhibitors on the serum levels of visfatin and apelin and their implications for cardiovascular disease management. Conclusion: The interactions between ACE inhibitors, visfatin, and apelin present promising avenues for targeted therapies in hypertension and cardiovascular diseases. Despite some inconsistencies in the research, understanding these interactions could lead to novel therapeutic approaches and enhanced cardiovascular care.


Main Subjects

  1. Ferrão FM, Lara LS, Lowe J. Renin-angiotensin system in the kidney: What is new? World journal of nephrology. 2014;3(3):64.
  2. Queiroz-Junior CM, Santos ACPM, Galvão I, Souto GR, Mesquita RA, Sá MA, et al. The angiotensin converting enzyme 2/angiotensin-(1-7)/Mas Receptor axis as a key player in alveolar bone remodeling. Bone. 2019;128:115041.
  3. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, et al. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiological reviews. 2017.
  4. Onuh JO, Qiu H. Metabolic profiling and metabolites fingerprints in human hypertension: discovery and potential. Metabolites. 2021;11(10):687.
  5. Craigie E, Mullins JJ, Bailey MA. Glucocorticoids and mineralocorticoids. Cardiovascular hormone systems: from molecular mechanisms to novel therapeutics. 2009:1-64.
  6. Smekal A, Vaclavik J. Adipokines and cardiovascular disease: A comprehensive review. Biomedical Papers of the Medical Faculty of Palacky University in Olomouc. 2017;161(1).
  7. Sara JD, Toya T, Taher R, Lerman A, Gersh B, Anavekar NS. Asymptomatic left ventricle systolic dysfunction. European Cardiology Review. 2020;15.
  8. Williams AF, Manias E, Walker R. Adherence to multiple, prescribed medications in diabetic kidney disease: a qualitative study of consumers’ and health professionals’ perspectives. International journal of nursing studies. 2008;45(12):1742-56.
  9. Schatz S, Weber RJ. Adverse drug reactions. Pharmacy Practice. 2015;1(1).
  10. Ragino YI, Stakhneva EM, Polonskaya YV, Kashtanova EV. The role of secretory activity molecules of visceral adipocytes in abdominal obesity in the development of cardiovascular disease: a review. Biomolecules. 2020;10(3):374.
  11. Dahl TB, Yndestad A, Skjelland M, Øie E, Dahl A, Michelsen A, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation. 2007;115(8):972-80.
  12. Abu-Farha M, Behbehani K, Elkum N. Comprehensive analysis of circulating adipokines and hsCRP association with cardiovascular disease risk factors and metabolic syndrome in Arabs. Cardiovascular diabetology. 2014;13:1-10.
  13. Musi N, Guardado-Mendoza R. Adipose tissue as an endocrine organ. Cellular endocrinology in health and disease: Elsevier; 2014. p. 229-37.
  14. Zhang Y, Yu M, Dong J, Wu Y, Tian W. Identification of novel adipokines through proteomic profiling of small extracellular vesicles derived from adipose tissue. Journal of proteome research. 2020;19(8):3130-42.
  15. Booth A, Magnuson A, Fouts J, Foster MT. Adipose tissue: an endocrine organ playing a role in metabolic regulation. Hormone molecular biology and clinical investigation. 2016;26(1):25-42.
  16. Taube A, Schlich R, Sell H, Eckardt K, Eckel J. Inflammation and metabolic dysfunction: links to cardiovascular diseases. American Journal of Physiology-Heart and Circulatory Physiology. 2012;302(11):H2148-H65.
  17. Huertas A, Perros F, Tu L, Cohen-Kaminsky S, Montani D, Dorfmüller P, et al. Immune dysregulation and endothelial dysfunction in pulmonary arterial hypertension: a complex interplay. Circulation. 2014;129(12):1332-40.
  18. Francisco V, Ruiz-Fernández C, Pino J, Mera A, Gonzalez-Gay MA, Gómez R, et al. Adipokines: linking metabolic syndrome, the immune system, and arthritic diseases. Biochemical pharmacology. 2019;165:196-206.
  19. Frasca D, Blomberg BB, Paganelli R. Aging, obesity, and inflammatory age-related diseases. Frontiers in immunology. 2017;8:1745.
  20. de Farias Lelis D, de Freitas DF, Machado AS, Crespo TS, Santos SHS. Angiotensin-(1-7), adipokines and inflammation. Metabolism. 2019;95:36-45.
  21. Vlasova M, Purhonen A, Jarvelin M, Rodilla E, Pascual J, Herzig K. Role of adipokines in obesity‐associated hypertension. Acta Physiologica. 2010;200(2):107-27.
  22. Rafaqat S, Nasreen S, Rafaqat S. Role of major adipokines in hypertension: A literature review. World Journal of Hypertension. 2023;11(1):1-11.
  23. Nakagawa P, Gomez J, Grobe JL, Sigmund CD. The Renin-Angiotensin System in the Central Nervous System and Its Role in Blood Pressure Regulation. Current Hypertension Reports. 2020;22(1):7.
  24. Cutrell S, Alhomoud IS, Mehta A, Talasaz AH, Van Tassell B, Dixon DL. ACE-Inhibitors in Hypertension: A Historical Perspective and Current Insights. Current Hypertension Reports. 2023;25(9):243-50.
  25. Yang R, Smolders I, Dupont AG. Blood pressure and renal hemodynamic effects of angiotensin fragments. Hypertension Research. 2011;34(6):674-83.
  26. Mehta JK, Kaur G, Buttar HS, Bagabir HA, Bagabir RA, Bagabir SA, et al. Role of the renin-angiotensin system in the pathophysiology of coronary heart disease and heart failure: Diagnostic biomarkers and therapy with drugs and natural products. Frontiers in Physiology. 2023;14:1034170.
  27. Ożegowska K, Bartkowiak-Wieczorek J, Bogacz A, Seremak-Mrozikiewicz A, Duleba AJ, Pawelczyk L. Relationship between adipocytokines and angiotensin converting enzyme gene insertion/deletion polymorphism in lean women with and without polycystic ovary syndrome. Gynecological Endocrinology. 2020;36(6):496-500.
  28. Santos RAS, Oudit GY, Verano-Braga T, Canta G, Steckelings UM, Bader M. The renin-angiotensin system: going beyond the classical paradigms. American Journal of Physiology-Heart and Circulatory Physiology. 2019.
  29. Raschke S, Elsen M, Gassenhuber H, Sommerfeld M, Schwahn U, Brockmann B, et al. Evidence against a beneficial effect of irisin in humans. PloS one. 2013;8(9):e73680.
  30. Ziaja M, Urbanek KA, Kowalska K, Piastowska-Ciesielska AW. Angiotensin II and Angiotensin Receptors 1 and 2—Multifunctional System in Cells Biology, What Do We Know? Cells. 2021;10(2):381.
  31. Zamai L. The Yin and Yang of ACE/ACE2 pathways: the rationale for the use of renin-angiotensin system inhibitors in COVID-19 patients. Cells. 2020;9(7):1704.
  32. Raschke S, Elsen M, Gassenhuber H, Sommerfeld M, Schwahn U, Brockmann B, et al. Evidence against a beneficial effect of irisin in humans. PloS One. 2013;8(9):e73680.
  33. Senatore F, Balakumar P, Jagadeesh G. Dysregulation of the renin-angiotensin system in septic shock: mechanistic insights and application of angiotensin II in clinical management. Pharmacological research. 2021;174:105916.
  34. van Thiel BS, van der Pluijm I, te Riet L, Essers J, Danser AJ. The renin–angiotensin system and its involvement in vascular disease. European journal of pharmacology. 2015;763:3-14.
  35. Te Riet L, van Esch JH, Roks AJ, van den Meiracker AH, Danser AJ. Hypertension: renin–angiotensin–aldosterone system alterations. Circulation research. 2015;116(6):960-75.
  36. Arendse LB, Danser AJ, Poglitsch M, Touyz RM, Burnett JC, Llorens-Cortes C, et al. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure. Pharmacological reviews. 2019;71(4):539-70.
  37. Katragadda S, Arora RR. Role of angiotensin-converting enzyme inhibitors in vascular modulation: beyond the hypertensive effects. American Journal of Therapeutics. 2010;17(1):e11-23.
  38. Khalil ME, Basher AW, Brown EJ, Alhaddad IA. A remarkable medical story: benefits of angiotensin-converting enzyme inhibitors in cardiac patients. Journal of the American College of Cardiology. 2001;37(7):1757-64.
  39. Sara JD, Toya T, Taher R, Lerman A, Gersh BJ, Anavekar NS. Asymptomatic Left Ventricle Systolic Dysfunction. European Cardiology Review 2020;15:e13. 2020.
  40. Patel BM, Mehta AA. Choice of anti-hypertensive agents in diabetic subjects. Diabetes and Vascular Disease Research. 2013;10(5):385-96.
  41. Coleman JJ, Pontefract SK. Adverse drug reactions. Clinical Medicine (London, England). 2016;16(5):481-5.
  42. Kanugula AK, Kaur J, Batra J, Ankireddypalli AR, Velagapudi R. Renin-Angiotensin System: Updated Understanding and Role in Physiological and Pathophysiological States. Cureus. 2023;15(6):e40725.
  43. Balistreri CR, Caruso C, Candore G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediators of Inflammation. 2010;2010:802078.
  44. Santos RAS, Oudit GY, Verano-Braga T, Canta G, Steckelings UM, Bader M. The renin-angiotensin system: going beyond the classical paradigms. American Journal of Physiology: Heart and Circulatory Physiology. 2019;316(5):H958-h70.
  45. Martyniak A, Tomasik PJ. A New Perspective on the Renin-Angiotensin System. Diagnostics (Basel). 2022;13(1).
  46. Miller AJ, Arnold AC. The renin-angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clinical Autonomic Research. 2019;29(2):231-43.
  47. Rodrigues Prestes TR, Rocha NP, Miranda AS, Teixeira AL, Simoes ESAC. The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research. Current Drug Targets. 2017;18(11):1301-13.
  48. Schouten LR, Helmerhorst HJ, Wagenaar GT, Haltenhof T, Lutter R, Roelofs JJ, et al. Age-Dependent Changes in the Pulmonary Renin-Angiotensin System Are Associated With Severity of Lung Injury in a Model of Acute Lung Injury in Rats. Critical Care Medicine. 2016;44(12):e1226-e35.
  49. Burhans MS, Hagman DK, Kuzma JN, Schmidt KA, Kratz M. Contribution of Adipose Tissue Inflammation to the Development of Type 2 Diabetes Mellitus. Comprehensive Physiology. 2018;9(1):1-58.
  50. DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nature Reviews: Endocrinology. 2014;10(6):364-76.
  51. Yu D, Huang B, Wu B, Xiao J. Association of serum vaspin, apelin, and visfatin levels and stroke risk in a Chinese case-control study. Medicine (Baltimore). 2021;100(12):e25184.
  52. Liakos CI, Sanidas EA, Perrea DN, Grassos CA, Chantziara V, Viniou NA, et al. Apelin and Visfatin Plasma Levels in Healthy Individuals With High Normal Blood Pressure. American Journal of Hypertension. 2016;29(5):549-52.
  53. Kim JA, Choi KM. Newly Discovered Adipokines: Pathophysiological Link Between Obesity and Cardiometabolic Disorders. Frontiers in Physiology. 2020;11:568800.
  54. Romacho T, Sánchez-Ferrer CF, Peiró C. Visfatin/Nampt: an adipokine with cardiovascular impact. Mediators of Inflammation. 2013;2013:946427.
  55. Adeghate E. Visfatin: structure, function and relation to diabetes mellitus and other dysfunctions. Current Medicinal Chemistry. 2008;15(18):1851-62.
  56. Gunes F, Akbal E, Cakir E, Akyurek O, Altunbas M, Ozbek M. Visfatin may be a novel marker for identifying stages of essential hypertension in advanced age patients. Internal Medicine. 2012;51(6):553-7.
  57. Wang P, Bai C, Xu QY, Xu TY, Su DF, Sassard J, et al. Visfatin is associated with lipid metabolic abnormalities in Lyon hypertensive rats. Clinical and Experimental Pharmacology and Physiology. 2010;37(9):894-9.
  58. Zheng LY, Xu X, Wan RH, Xia S, Lu J, Huang Q. Association between serum visfatin levels and atherosclerotic plaque in patients with type 2 diabetes. Diabetology & Metabolic Syndrome. 2019;11:60.
  59. Kocelak P, Olszanecka-Glinianowicz M, Owczarek A, Bożentowicz-Wikarek M, Brzozowska A, Mossakowska M, et al. Plasma visfatin/nicotinamide phosphoribosyltransferase levels in hypertensive elderly - results from the PolSenior substudy. Journal of the American Society of Hypertension. 2015;9(1):1-8.
  60. Hsu CY, Huang PH, Chen TH, Chiang CH, Leu HB, Huang CC, et al. Increased Circulating Visfatin Is Associated With Progression of Kidney Disease in Non-Diabetic Hypertensive Patients. American Journal of Hypertension. 2016;29(4):528-36.
  61. Kärberg K, Forbes A, Lember M. Visfatin and Subclinical Atherosclerosis in Type 2 Diabetes: Impact of Cardiovascular Drugs. Medicina. 2023;59(7):1324.
  62. Peng X, Wu H. Inflammatory Links Between Hypertriglyceridemia and Atherogenesis. Current Atherosclerosis Reports. 2022;24(5):297-306.
  63. Parimelazhagan R, Umapathy D, Sivakamasundari IR, Sethupathy S, Ali D, Kunka Mohanram R, et al. Association between Tumor Prognosis Marker Visfatin and Proinflammatory Cytokines in Hypertensive Patients. Biomed Research International. 2021;2021:8568926.
  64. Gandham R, Sumathi M, Dayanand C, Sheela S, Kiranmayee P. Apelin and its Receptor: An Overview. Journal of Clinical & Diagnostic Research. 2019;13(6).
  65. Askin L, Askin HS, Tanrıverdi O, Ozyildiz AG, Duman H. Serum apelin levels and cardiovascular diseases. Northern Clinical of Istanbul. 2022;9(3):290-4.
  66. Messerli FH, Bangalore S, Bavishi C, Rimoldi SF. Angiotensin-Converting Enzyme Inhibitors in Hypertension: To Use or Not to Use? Journal of the American College of Cardiology. 2018;71(13):1474-82.
  67. Chapman NA, Dupré DJ, Rainey JK. The apelin receptor: physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class A GPCR. Biochemistry and Cell Biology. 2014;92(6):431-40.
  68. Snarska A, Wysocka D, Rytel L, Makowska K, Gonkowski S. Cytological Evaluation of the Influence of High and Low Doses of Bisphenol a on an Erythroblastic Cell Line of Porcine Bone Marrow. Journal of Veterinary Research. 2018;62(4):543-7.
  69. Starfield B, Lemke KW, Bernhardt T, Foldes SS, Forrest CB, Weiner JP. Comorbidity: implications for the importance of primary care in 'case' management. Annals of Family Medicine. 2003;1(1):8-14.
  70. Földes G, Horkay F, Szokodi I, Vuolteenaho O, Ilves M, Lindstedt KA, et al. Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochemical and Biophysical Research Communications. 2003;308(3):480-5.
  71. Barnes G, Japp AG, Newby DE. Translational promise of the apelin--APJ system. Heart. 2010;96(13):1011-6.
  72. Mughal TI, Gotlib J, Mesa R, Koschmieder S, Khoury HJ, Cortes JE, et al. Recent advances in the genomics and therapy of BCR/ABL1-positive and -negative chronic myeloproliferative neoplasms. Hematological Oncology. 2018;67:67-74.
  73. Mughal A, Sun C, OʼRourke ST. Apelin Reduces Nitric Oxide-Induced Relaxation of Cerebral Arteries by Inhibiting Activation of Large-Conductance, Calcium-Activated K Channels. Journal of Cardiovascular Pharmacology. 2018;71(4):223-32.
  74. Wysocka MB, Pietraszek-Gremplewicz K, Nowak D. The role of apelin in cardiovascular diseases, obesity and cancer. Frontiers in physiology. 2018;9:557.
  75. Wang W, McKinnie SMK, Farhan M, Paul M, McDonald T, McLean B, et al. Angiotensin-Converting Enzyme 2 Metabolizes and Partially Inactivates Pyr-Apelin-13 and Apelin-17. Hypertension. 2016;68(2):365-77.
  76. Guang C, Phillips RD, Jiang B, Milani F. Three key proteases – angiotensin-I-converting enzyme (ACE), ACE2 and renin – within and beyond the renin-angiotensin system. Archives of Cardiovascular Diseases. 2012;105(6):373-85.
  77. Chatterjee P, Gheblawi M, Wang K, Vu J, Kondaiah P, Oudit GY. Interaction between the apelinergic system and ACE2 in the cardiovascular system: therapeutic implications. Clinical science. 2020;134(17):2319-36.
  78. Reboldi G, Gentile G, Angeli F, Verdecchia P. Choice of ACE inhibitor combinations in hypertensive patients with type 2 diabetes: update after recent clinical trials. Vascular Health and Risk Management. 2009;5(1):411-27.
  79. Manoharan S. Is It Still Relevant to Discover New ACE Inhibitors from Natural Products? YES, but Only with Comprehensive Approaches to Address the Patients' Real Problems: Chronic Dry Cough and Angioedema. Molecules. 2023;28(11).
  80. Tikellis C, Thomas MC. Angiotensin-Converting Enzyme 2 (ACE2) Is a Key Modulator of the Renin Angiotensin System in Health and Disease. International Journal of Peptides. 2012;2012:256294.
  81. McLachlan CS. The angiotensin-converting enzyme 2 (ACE2) receptor in the prevention and treatment of COVID-19 are distinctly different paradigms. Clinical Hypertension. 2020;26:14.
  82. Wysocka MB, Pietraszek-Gremplewicz K, Nowak D. The Role of Apelin in Cardiovascular Diseases, Obesity and Cancer. Frontiers in Physiology. 2018;9:557.
  83. Erten M. Visfatin as a Promising Marker of Cardiometabolic Risk. Acta Cardiologica Sinica. 2021;37(5):464-72.
  84. Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. American Journal of Physiology: Cell Physiology. 2012;302(2):C327-59.
  85. Lehr S, Hartwig S, Sell H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics: Clinical Applications. 2012;6(1-2):91-101.
  86. Brockman D, Chen X. Proteomics in the characterization of adipose dysfunction in obesity. Adipocyte. 2012;1(1):25-37.
  87. Kim EY, Kim WK, Oh KJ, Han BS, Lee SC, Bae KH. Recent advances in proteomic studies of adipose tissues and adipocytes. International Journal of Molecular Sciences. 2015;16(3):4581-99.
  88. Smekal A, Vaclavik J. Adipokines and cardiovascular disease: A comprehensive review. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia. 2017;161(1):31-40.
  89. Solini A, Stea F, Santini E, Bruno RM, Duranti E, Taddei S, et al. Adipocytokine levels mark endothelial function in normotensive individuals. Cardiovascular Diabetology. 2012;11:103.
  90. Youn JC, Kim C, Park S, Lee SH, Kang SM, Choi D, et al. Adiponectin and progression of arterial stiffness in hypertensive patients. International Journal of Cardiology. 2013;163(3):316-9.
  91. Xu C, Wang F, Chen Y, Xie S, Sng D, Reversade B, et al. ELABELA antagonizes intrarenal renin-angiotensin system to lower blood pressure and protects against renal injury. American Journal of Physiology: Renal Physiology. 2020;318(5):F1122-f35.
  92. Sato T, Suzuki T, Watanabe H, Kadowaki A, Fukamizu A, Liu PP, et al. Apelin is a positive regulator of ACE2 in failing hearts. Journal of Clinical Investigation. 2013;123(12):5203-11.
  93. Gemici B, Birsen İ, İzgüt-Uysal VN. The apelin-apela receptor APJ is necessary for formation and healing of ischemia reperfusion-induced gastric ulcer in rats. Peptides. 2023;166:171027.
  94. Bezci Aygun F, Kocabeyoglu S, Irkec M, Dikmen ZG, Umaroglu MM, Konstas AGP. Serum Apelin and Asymmetric Dimethylarginine Levels in Patients With Exfoliation Syndrome or Exfoliative Glaucoma. Journal of Glaucoma. 2020;29(7):593-7.
  95. Hung WW, Hsieh TJ, Lin T, Chou PC, Hsiao PJ, Lin KD, et al. Blockade of the renin-angiotensin system ameliorates apelin production in 3T3-L1 adipocytes. Cardiovascular Drugs and Therapy. 2011;25(1):3-12.
  96. Storka A, Vojtassakova E, Mueller M, Kapiotis S, Haider DG, Jungbauer A, et al. Angiotensin inhibition stimulates PPARgamma and the release of visfatin. European Journal of Clinical Investigation. 2008;38(11):820-6.
  97. Derosa G, Maffioli P, Ferrari I, Palumbo I, Randazzo S, Fogari E, et al. Different actions of losartan and ramipril on adipose tissue activity and vascular remodeling biomarkers in hypertensive patients. Hypertension Research. 2011;34(1):145-51.
  98. Mohamed RA, Sabry MM, Shawky HM, Tawadrous AF, Gharib D. Interaction between renin angiotensin system and apelin/APJ System in hypertensive rats. 2016;8:32-49.
  99. Sato T, Kadowaki A, Suzuki T, Ito H, Watanabe H, Imai Y, et al. Loss of Apelin Augments Angiotensin II-Induced Cardiac Dysfunction and Pathological Remodeling. International Journal of Molecular Sciences. 2019;20(2).
  100. Azziz R, Carmina E, Chen Z, Dunaif A, Laven JS, Legro RS, et al. Polycystic ovary syndrome. Nature reviews Disease primers. 2016;2(1):1-18.
  101. FATMA E. IBRAHIM MD, NANCY F. SAMIR, M.D., RASHED MD, LAILA A. The Interplay between Apelin/APJ System and Renin Angiotensin System in Protection Against Cold Restraint Stress Induced Gastric Ulcers in Adult Male Rats. The Medical Journal of Cairo University. 2018;86(December):4503-11.
  102. Al-rubaye FG. Serum concentration of Apelin and Asymmetric Dimethylarginine in hypertensive patients on different modalities of treatment. Cukurova Medical Journal. 2013;38(1):1-6.