Official Journal of the College of Pharmacy, University of Mosul

Document Type : Review Paper

Authors

1 Department of Clinical Pharmacy, College of Pharmacy, University of Mosul, Mosul, Iraq

2 Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul, Iraq

Abstract

Background: Mirabegron operates through a distinct mechanism compared to antimuscarinic agents. Its activation of β3-adrenoceptors results in the relaxation of the bladder during the filling phase of micturition. The activation of β3-adrenoceptors, which are connected to Gs-proteins, is hypothesized to be the mechanism of mirabegron-induced smooth muscle relaxation. This coupling stimulates adenylyl cyclase, leading to an elevation of intracellular levels of cyclic adenosine monophosphate (cAMP). However, in rat and human corpus cavernosum, mirabegron induces relaxation through distinct mechanisms independently through the nitric oxide/cyclic guanosine monophosphate (NO-cGMP) pathway. Consequently, the precise mechanism by which mirabegron enhances relaxation is still not fully known. Aim: The main goal is to delve deeper into the complex mechanisms by which mirabegron causes smooth muscle relaxation in many tissues. Conclusion: Mirabegron and similar β3-adrenoceptor agonists hold promise for treating not only overactive bladder but also a range of other conditions including heart failure and metabolic disorders.

Keywords

Main Subjects

  1. Brucker BM, King J, Mudd PN, Jr., McHale K. Selectivity and Maximum Response of Vibegron and Mirabegron for beta(3)-Adrenergic Receptors. Current Therapeutic Research - Clinical and Experimental 2022;96:100674.
  2. Huang R, Liu Y, Ciotkowska A, Tamalunas A, Waidelich R, Strittmatter F, et al. Concentration-dependent alpha(1)-Adrenoceptor Antagonism and Inhibition of Neurogenic Smooth Muscle Contraction by Mirabegron in the Human Prostate.  Frontiers in Pharmacology 2021;12:666047.
  3. Lim I, Chess-Williams R. Mirabegron attenuates porcine ureteral contractility via alpha1-adrenoceptor antagonism. Naunyn-Schmiedeberg's Archives of Pharmacology 2022;395(7):839-47.
  4. Maki T, Kajioka S, Itsumi M, Kareman E, Lee K, Shiota M, et al. Mirabegron induces relaxant effects via cAMP signaling-dependent and -independent pathways in detrusor smooth muscle. Lower Urinary Tract Symptoms. 2019;11(2):O209-O17.
  5. de Oliveira MG, Rojas-Moscoso JA, Bertollotto GM, Candido TZ, Kiguti LRA, Pupo AS, et al. Mirabegron elicits rat corpus cavernosum relaxation and increases in vivo erectile response. European Journal of Pharmacology 2019;858:172447.
  6. Bardou M, Loustalot C, Cortijo J, Simon B, Naline E, Dumas M, et al. Functional, biochemical and molecular biological evidence for a possible beta(3)-adrenoceptor in human near-term myometrium. British Journal of Pharmacology 2000;130(8):1960-6.
  7. Atef N, Lafontan M, Double A, Helary C, Ktorza A, Penicaud L. A specific beta 3-adrenoceptor agonist induces increased pancreatic islet blood flow and insulin secretion in rats. European Journal of Pharmacology 1996;298(3):287-92.
  8. Tamaoki J, Tagaya E, Isono K, Nagai A. Atypical adrenoceptor-mediated relaxation of canine pulmonary artery through a cAMP-dependent pathway. Biochemical and Biophysical Research Communications 1998;248(3):722-7.
  9. Kaumann AJ, Molenaar P. Differences between the third cardiac beta-adrenoceptor and the colonic beta 3-adrenoceptor in the rat. British Journal of Pharmacology 1996;118(8):2085-98.
  10. Webb RC. Smooth muscle contraction and relaxation. Advances in Physiology Education 2003;27(1-4):201-6.
  11. Morgan JP, Morgan KG. Alteration of cytoplasmic ionized calcium levels in smooth muscle by vasodilators in the ferret. The Journal of Physiology 1984;357:539-51.
  12. Pearson JT, Jenkins MJ, Edgley AJ, Sonobe T, Joshi M, Waddingham MT, et al. Acute Rho-kinase inhibition improves coronary dysfunction in vivo, in the early diabetic microcirculation. Cardiovascular Diabetology 2013;12:111.
  13. Zhou K, Parker JD. The role of vascular endothelium in nitroglycerin-mediated vasodilation. British Journal of Clinical Pharmacology 2019;85(2):377-84.
  14. Matthies M, Rosenstand K, Nissen I, Muitjens S, Riber LP, De Mey JGR, et al. Nitric oxide (NO) synthase but not NO, HNO or H(2) O(2) mediates endothelium-dependent relaxation of resistance arteries from patients with cardiovascular disease. British Journal of Pharmacology 2022;179(5):1049-64.
  15. Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, et al. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. Journal of Cardiovascular Pharmacology 1996;28(5):703-11.
  16. Snyder SH. Robert Furchgott (1916–2009). Nature 2009;460(7251):47-.
  17. Kou R, Michel T. Epinephrine regulation of the endothelial nitric-oxide synthase: roles of RAC1 and beta3-adrenergic receptors in endothelial NO signaling. Journal of Biological Chemistry 2007;282(45):32719-29.
  18. Berridge MJ. Smooth muscle cell calcium activation mechanisms. The Journal of physiology 2008;586(21):5047-61.
  19. Cernecka H, Kersten K, Maarsingh H, Elzinga CR, de Jong IJ, Korstanje C, et al. β 3-Adrenoceptor-mediated relaxation of rat and human urinary bladder: roles of BK Ca channels and Rho kinase. Naunyn-schmiedeberg's Archives of Pharmacology 2015;388:749-59.
  20. de Oliveira MG, Rojas-Moscoso JA, Bertollotto GM, Candido TZ, Kiguti LRdA, Pupo AS, et al. Mirabegron elicits rat corpus cavernosum relaxation and increases in vivo erectile response. European Journal of Pharmacology 2019;858:172447.
  21. Brawley L, Shaw AM, MacDonald A. Beta 1-, beta 2- and atypical beta-adrenoceptor-mediated relaxation in rat isolated aorta. British Journal of Pharmacology 2000;129(4):637-44.
  22. Trochu JN, Leblais V, Rautureau Y, Beverelli F, Le Marec H, Berdeaux A, et al. Beta 3-adrenoceptor stimulation induces vasorelaxation mediated essentially by endothelium-derived nitric oxide in rat thoracic aorta. British Journal of Pharmacology 1999;128(1):69-76.
  23. Dessy C, Moniotte S, Ghisdal P, Havaux X, Noirhomme P, Balligand JL. Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. Circulation 2004;110(8):948-54.
  24. Dessy C, Moniotte S, Ghisdal P, Havaux X, Noirhomme P, Balligand J-L. Endothelial β3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. Circulation 2004;110(8):948-54.
  25. Cannavo A, Koch WJ. Targeting beta3-Adrenergic Receptors in the Heart: Selective Agonism and beta-Blockade. Journal of Cardiovascular Pharmacology 2017;69(2):71-8.
  26. Wheeldon NM, McDevitt DG, Lipworth BJ. Cardiac effects of the beta 3-adrenoceptor agonist BRL35135 in man. British Journal of Clinical Pharmacology 1994;37(4):363-9.
  27. Cernecka H, Kersten K, Maarsingh H, Elzinga CR, de Jong IJ, Korstanje C, et al. beta3-Adrenoceptor-mediated relaxation of rat and human urinary bladder: roles of BKCa channels and Rho kinase. Naunyn-schmiedeberg's Archives of Pharmacology 2015;388(7):749-59.
  28. Brown SM, Bentcheva-Petkova LM, Liu L, Hristov KL, Chen M, Kellett WF, et al. Beta-adrenergic relaxation of mouse urinary bladder smooth muscle in the absence of large-conductance Ca2+-activated K+ channel. American Journal of Physiology-Renal Physiology 2008;295(4):F1149-57.
  29. Afeli SA, Rovner ES, Petkov GV. BRL37344, a beta3-adrenergic receptor agonist, decreases nerve-evoked contractions in human detrusor smooth muscle isolated strips: role of BK channels. Urology 2013;82(3):744 e1-7.
  30. Gur S, Peak T, Yafi FA, Kadowitz PJ, Sikka SC, Hellstrom WJ. Mirabegron causes relaxation of human and rat corpus cavernosum: could it be a potential therapy for erectile dysfunction? BJU International 2016;118(3):464-74.
  31. Seftel AD. Re: Mirabegron Causes Relaxation of Human and Rat Corpus Cavernosum: Could it be a Potential Therapy for Erectile Dysfunction? Journal of Urology 2017;197(3 Pt 1):785.
  32. Cirino G, Sorrentino R, di Villa Bianca R, Popolo A, Palmieri A, Imbimbo C, et al. Involvement of beta 3-adrenergic receptor activation via cyclic GMP- but not NO-dependent mechanisms in human corpus cavernosum function. Proceedings of the National Academy of Sciences  2003;100(9):5531-6.
  33. Mo W, Michel MC, Lee XW, Kaumann AJ, Molenaar P. The beta(3) -adrenoceptor agonist mirabegron increases human atrial force through beta(1) -adrenoceptors: an indirect mechanism? British Journal of Pharmacology 2017;174(16):2706-15.
  34. Christ T, Molenaar P, Klenowski PM, Ravens U, Kaumann AJ. Human atrial beta(1L)-adrenoceptor but not beta(3)-adrenoceptor activation increases force and Ca(2+) current at physiological temperature. British Journal of Pharmacology 2011;162(4):823-39.
  35. Parent R, Al-Obaidi M, Lavallee M. Nitric oxide formation contributes to beta-adrenergic dilation of resistance coronary vessels in conscious dogs. Circulation research 1993;73(2):241-51.
  36. Treinys R, Zablockaite D, Gendviliene V, Jurevicius J, Skeberdis VA. beta(3)-Adrenergic regulation of L-type Ca(2)(+) current and force of contraction in human ventricle. The Journal of Membrane Biology2014;247(4):309-18.
  37. Skeberdis VA, Gendviliene V, Zablockaite D, Treinys R, Macianskiene R, Bogdelis A, et al. beta3-adrenergic receptor activation increases human atrial tissue contractility and stimulates the L-type Ca2+ current. Journal of Clinical Investigation 2008;118(9):3219-27.
  38. Viard P, Macrez N, Coussin F, Morel JL, Mironneau J. Beta-3 adrenergic stimulation of L-type Ca(2+) channels in rat portal vein myocytes. British Journal of Pharmacology 2000;129(7):1497-505.
  39. Leroy J, Fischmeister R. [beta-adrenergic regulation of the L-type Ca(2+) current: the missing link eventually discovered]. Medical Sciences (Paris). 2020;36(6-7):569-72.
  40. Alexandre EC, Kiguti LR, Calmasini FB, Silva FH, da Silva KP, Ferreira R, et al. Mirabegron relaxes urethral smooth muscle by a dual mechanism involving beta3 -adrenoceptor activation and alpha1 -adrenoceptor blockade. British Journal of Pharmacology 2016;173(3):415-28.
  41. Dehvari N, da Silva Junior ED, Bengtsson T, Hutchinson DS. Mirabegron: potential off target effects and uses beyond the bladder. British Journal of Pharmacology 2018;175(21):4072-82.

 

  1. Yamada S, Chimoto J, Shiho M, Okura T, Morikawa K, Wakuda H, et al. Possible Involvement of Muscarinic Receptor Blockade in Mirabegron Therapy for Patients with Overactive Bladder. Journal of Pharmacology and Experimental Therapeutics 2021;377(2):201-6.
  2. Silva I, Costa AF, Moreira S, Ferreirinha F, Magalhaes-Cardoso MT, Calejo I, et al. Inhibition of cholinergic neurotransmission by beta(3)-adrenoceptors depends on adenosine release and A(1)-receptor activation in human and rat urinary bladders. American Journal of Physiology-Renal Physiology 2017;313(2):F388-F403.
  3. Kuo YC, Kuo HC. Comparative study of different combinations of mirabegron and antimuscarinics in treatment for overactive bladder syndrome in elderly patients. Tzu Chi Medical Journal 2023;35(1):62-8.
  4. West EG, McDermott C, Chess-Williams R, Sellers DJ. Mirabegron and solifenacin are effective for the management of the increased urinary frequency induced by psychological stress in female mice. Scientific Reports 2022;12(1):12365.
  5. Svalo J, Nordling J, Bouchelouche K, Andersson KE, Korstanje C, Bouchelouche P. The novel beta3-adrenoceptor agonist mirabegron reduces carbachol-induced contractile activity in detrusor tissue from patients with bladder outflow obstruction with or without detrusor overactivity. European Journal of Pharmacology 2013;699(1-3):101-5.