Effect of polyphenol secondary metabolites on oxidative stress and inflammatory responses associated with aging diseases

Khadeeja Y. Abid*, Maimonah Q. Yahya**, Adnan A. Zainal***

*Department of Pharmacognosy, College of Pharmacy, Mosul University, Mosul, Iraq ** Department of Clinical Laboratory Science, College of Pharmacy, Mosul University, Mosul, Iraq *** Department of pharmacology, College of Pharmacy, Mosul University, Mosul, Iraq Corresponding author: <u>pharm.maymona@uomosul.edu.iq</u>

Received	Accepted
22-10-2021	26-11-2021

ABSTRACT:

Several mechanisms are responsible for regulating the process of aging. A rise in reactive oxygen species (ROS) and oxidative stress is usually linked to the development of age-related diseases. Evidence indicates that prolonged oxidative stress can predispose to frequent diseases such as chronic inflammation, cancer and heart diseases. Polyphenols are naturally occurring substances found in numerous fruits, vegetables, cereals, etc. They considered as one of the most abundant and widely distributed secondary metabolites of the plant kingdom. Long-term consumption of polyphenol-rich diets was confirmed for protection from as shown by earlier. Additionally, polyphenol-rich foods and beverages offer protection against certain chronic diseases, particularly type 2 diabetes and heart disease. Certain polyphenols, such as quercetin, have anti-inflammatory properties and they were also associated with lower levels of biomarkers of muscle injury and inflammation. Flavonoids were shown to slow memory problems and the progression of Alzheimer's disease. Antioxidants such as plant polyphenols have been proposed for cancer prevention and/or treatment. Dietary benefits are attributed in part to polyphenols, which have antitumor properties in both animal models and humans. Resveratrol (RV), a polyphenol found in blueberries, cranberries, wine almonds, and red grapes, has antiinflammatory and anti-cancer properties and was shown to reduce cancer cell glycolytic metabolism and reduce intracellular ROS levels.

Keywords: aging process, reactive oxygen species, oxidative stress, anti-inflammatory.

الخلاصة: هناك مجموعة متنوعة من العمليات المسؤولة عن تنظيم عملية الشيخوخة ، أي زيادة في أنواع الأكسجين التفاعلية (ROS) والإجهاد التأكسدي مرتبط بالأمراض المرتبطة بالعمر. تشير الدلائل إلى أن الإجهاد التأكسدي المطول يمكن أن يكون عاملاً مسببًا له علاقة بالعديد من الأمراض. البوليفينول عبارة عن مواد موجودة بشكل طبيعي في العديد من الفواكه والخضروات والحبوب وما إلى ذلك ، وهي واحدة من أكثر فئات المنتجات الطبيعية وفرة وتوزيعًا على نطاق واسع في المملكة بالنواكة والخضروات والحبوب وما إلى ذلك ، وهي واحدة من أكثر فئات المنتجات الطبيعية وفرة وتوزيعًا على نطاق واسع في المعلكة والنباتية. وُجد أن الاستهلاك طويل الأمد للأنظمة الغذائية النباتية الغنية بالبوليفينول يساعد في توفير الحماية من السرطان في دراسات سابقة. بالإضافة إلى ذلك ، توفر الأطعمة والمشروبات الغنية بالبوليفينول يساعد في توفير الحماية من المراض المرامنة ، دراسات سابقة. بالإضافة إلى ذلك ، توفر الأطعمة والمشروبات الغنية بالبوليفينول المعاية من بعض الأمراض المراض المرامان ألمراض الغايقة الغنية بالبوليفينول يساعد في توفير الحماية من السرطان في دراسات سابقة. بالإضافة إلى ذلك ، توفر الأطعمة والمشروبات الغنية بالبوليفينول بساعد في توفير المراض المراض المرامن ألمراض المرامات الغنية بالبوليفينول ماحماية من بعض الأمراض المرامنة ، وخاصة مرض السكري من النوع 2 وأمراض القلب. تحتوي بعض البوليفينول ، مثل كيرسيتين ، على خصائص مضادة وخاصة مرض السكري من النوع 2 وأمراض القلب. تحتوي بعض البوليفينول ، مثل كيرسيتين ، على خصائص مضادة اللالتهابات ، كما أنها مرتبطة بمستويات أقل من المؤشرات الحيوية لإصابة العضلات والالتهابات. وقد ثبت أن مركبات الفلافونويد تبطئ مشاكل الذاكرة وتطور مرض الزهايمر. تم اقتراح مضادات الأكسدة مثل البوليفينول النباتي للوقاية من الفلافونويد تبطئ ماليان والاتها والورام في الوليفينول النباتي للوقاية من السرطان و / أو علاجه ويُعزى ذلك الى الفوائد الغذائية لمادة البوليفينول ، التي لها خصائص مضادة للأورام في كل من الملافونويد تبطئ مشاكل الذاكرة ولعور مرض الزهايمر. تم اقتراح مضادات الأكسدة مثل البوليفينول النباتي المركاس المرطان و / أو علاجه ويُعزى ذلك الى الفوائد الغذائية لمادة البوليفينول ، التي ويلي منوسانة مرمران ولمان و / أو علاجه ويُعزى ذلك الى الفوائد الغذائية لمادة

، له خصائص مضادة للالتهابات ومضادة للسرطان وقد ثبت أنه يقلل من التمثيل الغذائي للخلايا السرطانية ويقلل من مستويات ROS داخل الخلابا.

الكلمات المفتاحية : عملية الشيخوخة ، أنواع الأكسجين التفاعلية ، الإجهاد التأكسدي ، مضاد للالتهابات.

INTRODUCTION:

ging is a bio phenomenon, with a gradual loss of cellular functions and decreased tissue renewal multicellular organisms, capability in resulting in a decreased ability to resolve environmental factors. A number of mechanisms may involve in regulating the aging process, including genetic, epigenetic, and environmental factors ¹. Aging, on average, harms wellbeing, according to certain studies, a rise in reactive oxygen species (ROS) and the resultant oxidative stress is connected to age-related diseases. In reality, the antioxidant properties of natural compounds were illustrated in a variety of studies ^{1,2}. "Phytochemicals" is a term used to describe substances that are found in plants². Polyphenols are naturally substances found in many fruits, vegetables, cereals, and other foods. Alcoholic drinks (apple, pear, cherries, grapes, and berries) for example, contain 200-300 mg of Polyphenols in every100 gram of fresh weight ¹. Polyphenols are secondary metabolites found in plants that reflect certain characteristics in food such as bitterness, astringency, color, taste, odor, and oxidative stability. They are widely found in foods and are used to defend pathogens³. against UV rays and Epidemiological research and related metaanalyses near the end of the 20th century suggested that long-term strongly consumption of plant polyphenol-rich diets provided some cancer protection ⁴. The purpose of this article is to review the health benefits of polyphenols and other phenolic found in foods focusing on their antioxidants mechanisms and the impact of this on

74

human wellbeing and diseases associated with old age.

The consequences of oxidative stress and how it interacts with age related diseases.

The accumulation of Reactive Oxygen Species (ROS) damages mRNA and inhibits lipid/protein oxidation, resulting in a reduction in mitochondrial function and increased oxidative stress. As people age, they may experience a gradual loss in mitochondrial function and oxidative stress responses ⁴.

Reactive oxygen species, antioxidant balance and oxidative stress

At acceptable levels, ROS, an unavoidable byproduct of aerobic respiration, is beneficial and necessary for normal cellular responses and cell-mediated immunity. Reactive nitrogen species (RNS) may be beneficial to the body in a similar way². Antioxidants are capable of neutralizing excess ROS/RNS in a normally "Nonetheless functioning cell. overproduction of (O₂-), (•OH) (ONOO), (H_2O_2) , and other reactive organisms (ROOH), $(1O_2)$, reactive lipid aldehydes, and reactive nitric oxide (NO), are accompanied by an antioxidant deficiency in the body Accordingly, there is enhanced oxidative damage to the body, mainly at cell constituents level (protein, lipids, and DNA)" ⁵. This condition primarily promotes abnormal cell death, inflammation, and, as a result, age-related diseases. According to a study made by (Munialo CD, 2019), antioxidants supplementation prove effectiveness in replenishing low levels of endogenous antioxidant evidence bv scavenging reactive oxygen species (ROS/RNS) ⁶. Exogenous supplements (minerals, vitamins, organ sulfur compounds, carotenoids, and polyphenols) have been shown to improve health and preserve antioxidant resistance, resulting in a long and healthy life⁷.

Polyphenol's History

Polyphenols have historically piqued the interest of plant scientists because they play different roles in plants and are classified as secondary metabolites. Plants are protected from environmental stresses such as drought, by producing certain phytochemicals or metabolites. UV light both protects against pests and adds color to attract them³. Hesperidin, flavonoid, in the 1930s was suggested to be labeled as a vitamin (vitamin P), in the nineties; polyphenols came to be recognized as antioxidants⁸. However, the fact is much more complex, and biological processes involve complicated interactions with molecular pathways. As a result, much progress has been made in the last two decades. Polyphenol-rich foods and beverages offer protection against certain chronic diseases, particularly type 2 diabetes, hypertension and heart disease⁹... They have a limited commercial application as nutraceuticals due to their weak solubility, instability when exposed to light, heat, and alkaline environments, and low consistency ¹.

Polyphenol classification number

Polyphenols are one of the most abundant and widely distributed natural product categories in the plant kingdom. There are currently over 4000 flavonoids with recognized structures discovered, in addition to over 8000 phenolic compounds ¹⁰. Polyphenols are categorized into certain classes based upon their, Origin, chemical structure, and biological functions ¹¹.

They are divided into four categories 12 :

Phenolic acids: They account for nearly one-third of the polyphenolic chemicals in the diet and can be found in any plant are especially material. though they abundant in sour fruits. Ferulic, caffeic, gallic, and phenolic acids are all examples of common phenolic acids.

Flavonoids: The most common polyphenols found in healthy diets are flavonoids, which all have the same basic structure: aromatic rings (only two) fused by carbon atoms (three atoms)to form an oxygenated heterocyclic.

Stilbenes: These are a form of supplement from the diet, that contains stilbenes, a methylene bridge with two carbon atoms that connect two phenyl groups. Antifungal phytoalexins, formed as part of response against infection, constitute the predominant stilbenes in plants.

Two cinnamic acids: residues dimerize to form a 2, 3-dibenzylbutane structure in lignans, which are phenolic compounds.

Polyphenols in nature.

Polyphenols can be present in leaf tissue, the bark layer, flowers, and fruits of almost all plant families. Phenolic compounds exist in plants at the tissue, cellular, and subcellular levels. Cell walls contain insoluble phenolic compounds, while the plant cell vacuoles contain soluble phenolic compounds. Also, it can be found in a variety of plant products, including tomatoes, cereals, fruit juices, tea, and wine. A variety of factors influence plant polyphenol content, including harvest ripeness, storage, and environmental factors (soil type, sun exposure, rainfall) ^{13, 14}.

Polyphenols are present in the form of flavanones and isoflavones, on the other

hand, foods may contain complex polyphenols ¹⁴ as shown in table-1.

Chemical class	Most common examples	Rich sources
Flavanols	Catechins Gallo-catchines	Tea, cocoa ,apples ,broad bean
Flavanones	hesperidin	Citrus fruit
Flavonols	Quercetin, rutin	Tea, apples, onions
Hydroxy-cinnamic Acid	Chlorogenic acids (caffe-oylquinic acids)	Coffee, chicory, artichoke plum, pears
Anthrocyanin	cyanidin	Beery fruits

Table (1): the content of polyphenols in food and beverages ¹⁴.

Polyphenols and Diseases Caused by Oxidative Stress (OS)

Evidence indicates that prolonged oxidative stress (OS) can be an etiological factor involved in several diseases, including heart disease, diabetes, and neoplastic diseases. Several factors contribute to the excessive generation of free radicals, including diet, lifestyle habits, and environmental factors including pollution and radiation 2 .

Molecules possessing one or more unpaired electrons are known as free radicals like nitric oxide, superoxide, and hydroxyl radicals. Oxidative Stress can also be caused by the body's natural immunological response. Mild inflammation is caused by this type of oxidative stress, and it goes away after the immune system overcomes infection or an injury is resolved ⁵. Excessive oxidative stress has been shown

to hasten age. Physical activity-induced OS, for example, may have well, regulating consequences on the body. Polyphenols protect against exhaustion, inflammation, and tissue damage caused by intense exercise ¹⁷. Exercise promotes the development of free radicals, which can result in transient oxidative stress in the muscles. Free radicals generated during physical activity, on the other hand, regulate the growth of tissues and stimulate the development of growth factors. Mild OS can protect against infection and disease. According to a report, OS slowed the spread of HIV¹⁵. Long-term OS, on the other hand, has detrimental effects on cells, proteins, and DNA. This can accelerate aging and precipitate many diseases

Oxidative stress and chronic inflammation

Infections and accidents activate the immune system. When fighting off invading germs, immune cells called macrophages create free radicals. These free radicals can cause inflammation by damaging healthy cells. In most cases, inflammation subsides after the immune system has done its job, removes the infection ⁷. Oxidative stress, on the other hand, can activate the immune response, which produces more free **Arachidonic acid**

radicals, aggravating Oxidative Stress even more, effectively bringing about a vicious cycle. The biosynthetic pathway for prostaglandins (PGs) is intimately linked to the relationship between oxidative stress and chronic inflammation ¹². Cyclooxygenase (COX) is an important enzyme responsible for the synthesis of prostaglandins (PGH2) from arachidonic acid. As shown in the figure-1, the conversion of (PGG2) to (PGH2) generates reactive species¹⁶.

Figure (1): Formation of reactive oxygen species by prostaglandin pathway ¹⁶.

Protective effects of polyphenols on exhaustive exercise induced fatigue, inflammation and tissue damage

The tea polyphenols allowed the rats to stay active for longer than the nonpolyphenol-treated rats. They also had lower levels of biomarkers of muscle injury and inflammation ¹⁷. Lignans are a form of polyphenol found in highest concentrations in virgin olive oil, flaxseed, and whole grain rye flour. A study reported that higher urinary concentrations of lignans were linked to a lower degree of inflammation. This is important since chronic inflammation that contributes to several diseases, including cancer and heart disease, has been connected to it ¹⁸.

Vascular diseases

Oxidative stress can cause aging, genetic disorder, conventional risk factors, and external conditions, especially in vessels

where (NADPH), NOX (Nitrogen oxide) and uncoupled NOS (Nitric oxide synthase) are the primary oxidative stress sources. A small increase in net ROS at physiological levels may trigger protective effects via redox signaling, resulting in an increased anti-oxidative potential for improved antioxidative capacity ⁵. The cellular damage and endothelial dysfunction occur when ROS production exceeds the ability of the body's anti-oxidative defenses, contributing to coronary artery disease ¹⁵. Ischemic stroke during a myocardial infarction (MI) results in a loss of functional myocardium and, eventually, heart failure which can also be caused by other factors, such as primary cardiomyopathy or diabetes. Specific mechanisms, such as receptor-induced NOX2 (Nitrogen oxide2)

Activation and mitochondrial redox because increased cardiac mismatch. oxidative stress. As a result, mitochondrial NADPH(Nicotine amide adenine dinucleotide Phosphate) oxidation produces hydrogen peroxide (H2O2), which causes contractile dysfunction, arrhythmia, and ultimately maladaptive cardiac renovating via atrophy and cell death ¹⁹.

Flavonoid-rich cocoa's cardio protective effects

Polyphenols, essential an component, account for up to 18% of the total weight of cocoa. Phenolic compounds with the greatest abundance in cocoa and cocoa products are flavonoids such as epicatechin, catechin. and proanthocyanidins. Their flavonoid content is greater than other polyphenol-rich foods 9 . Endothelial NO synthase (eNOS) is activated by all polyphenols, regardless of their source, resulting in NO(Nitrogen oxide) output that activates guanylate cvclase in smooth muscle cells and platelets. increasing cyclic guanosine monophosphate

Because of the subsequent (cGMP). inhibition of calcium flux and reduction in calcium composition, cellular smooth muscle cell relaxation and platelet aggregation are inhibited. Furthermore, cGMP increases the formation of cyclic adenosine monophosphate (cAMP), which also stimulates the prostacyclin 20 Prostacyclin functions as a vasodilator in a synergistic manner.NO contribute to thrombosis defense by increasing NO levels. Furthermore, prostacyclin's ability to lower plasma leukotrienes enhances its antiinflammatory and vaso-protective properties ²¹. Following ingestion of cacao and dark chocolate, a sequence of incidents occurs involving NO and cGMP-induced dilatation of vessels, and anti-inflammatory effect mediated by prostaglandins occur²².

In reality, cocoa polyphenols lower NADPH levels (which produces O2, which scavenges NO). As a result, it inhibits the increase of NO levels²³. Platelets are yet another significant goal of polyphenol, present in high levels in cocoa. First and foremost, platelets will liberate NO under the impact of flavanols, resulting in vasodilation ²⁴. For cocoa-mediated platelet aggregation inhibition, Thromboxane A2 (TXA2) formulation must be reduced and TXA2 receptors must be antagonized 25 .

The Health Benefits of Polyphenols on CNS and Behavioral patterns.

Polyphenol's effects on the CNS were extensively researched including both experimental animals and humans. Flavonoids found in Ginkgo biloba were shown to slow memory problems and the progression of Memory loss (Alzheimer)²⁶. Flavonoids inhibit protein kinase while increasing the representation of brainderived neurotrophic factor (BDNF), a key component that promotes neurogenesis. synaptic progression, and neuron ability to

survive in brain regions involved in learning and memory, such as sub ventricular regions²⁷. Other mechanism depends on NO production, which causes dilatation of blood vessels and enhanced cerebral blood flow and circulatory in the CNS and peripheral nervous system²⁸. Increased blood flow will supply oxygen and nutrients to nerve cells, as well as removing waste compounds from the brain and encouraging angiogenesis in the hippocampus 29 .

The role of dietary polyphenols in the prevention of diabetes mellitus.

Many studies have found that oxidative stress contributes to the representation and health of diabetic complications³⁰. Polyphenols can affect glycemic control in different ways, including inhibiting glucose metabolism and intestinal absorption, stimulating pancreaticcell insulin secretion, modifying glucose transport from the liver, triggering insulin receptors and glucose absorption in insulinsensitive body tissue, and modulating hepatic glucose output ³¹.

Curcumin as a possible diabetes mellitus treatment and prevention agent:

Curcumin is polyphenolic a compound extracted from the Indian spice turmeric (Curcuma longa), a ginger-related plant. The intestinal microbiota degrades curcumin as well as other polyphenols, resulting in very little or no native curcumin in circulation. Several in vitro and in vivo studies, nevertheless, have demonstrated that these compounds can have anti-diabetic properties, implying that tissue effects are associated with these compounds or their degradation products ³⁰. At the same time, curcumin's polyphenols(C/local P's) intestine activities may cause changes in the microbial flora's makeup. As a result, the changed flora may have an impact on C/P)

Curcumin and other polyphenols)metabolism. Short-chain fatty acids stimulate GLP-1(Glucagon-like peptide-1)release, which increases insulin release and alters intestinal wall penetrability, resulting in improved metabolic control ³⁰.

Polyphenols have a cancer-protective effect.

Cancer is one of the world's most serious diseases. In 2018, 9.6 million people died from cancer, according to the World Health Organization (WHO). However, 30% of cancers are preventable, and most of the cancer types, such as breast, colon cancer, and cervical cancer, can be cured if diagnosed and treated early. Oxidative stress is among the most major factors that lead to cancer ³². Many researchers have indicated that a diet rich in antioxidants, in particular, may aid in cancer prevention³³. Dietary benefits are attributed in part to polyphenols, which have antitumor properties in both animal models and humans³⁴. Many dietary polyphenolic compounds were shown to anticancer possess activity, including Methylation of DNA, histone acetylation phase, and gene transcription, mRNAregulated cancer stem cell biology, and the initiation of premature senescence in tumor cells³⁵. According to evidence from cancer epidemiology and experimental efforts, polyphenols have a promising future as epigenetic activators and cancer stem cell metabolic processes regulators in modern approaches³⁶. anticancer Curcumin possesses anti-inflammatory and antioxidant properties that have been linked to a variety benefits, health including cancer of prevention. Curcumin's long-term action on the liver of lymphoma-affected mice prevents cancer by increasing phase-II enzymes, antioxidant restoring tumor suppressor p53. and modulating inflammatory mediators such as interleukin- 6^{36} . Resveratrol (RV) has anti-inflammatory

and anti-cancer properties. It can influence cell proliferation, apoptosis, angiogenesis, and tumor metastasis via modulating signaling pathways³⁷. Due to its antioxidant activity and effects on glucose metabolism, RV is also gaining popularity.

CONCLUSION:

Polyphenols are bioactive substances found in a variety range of fruits, vegetables, and drinks. They include numerous phenol structural units and have anti-inflammatory, anti-diabetic, antioxidant, anti-tumor, and antihypertensive characteristics, and their

REFERENCES:

1. Spencer JP, El Mohsen MMA, Minihane A-M, Mathers JC. Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. British Journal of Nutrition. 2008; 99(1):12-22. https://doi.org/10.1017/S000711450779893 8.

2 .Beckman CH. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiological Molecular and Plant Pathology. 2000;57(3):101-10. https://doi.org/10.1006/pmpp.2000.0287.

3. Hollman P, Arts I. Polyphenols and disease risk in epidemiological studies. Am J Clin Nutr. 2005: 81:317-25. https://doi.org/10.1093/ajcn/81.1.3178

4. Maynard S, Fang EF, Scheibye-Knudsen M, Croteau DL, Bohr VA. DNA damage, DNA repair, aging, and neurodegeneration. Spring Harbor perspectives Cold in 2015;5(10):a025130. medicine. https://doi.org/ 10.1101/cshperspect.a025130

consumption at a sufficient level may protect against certain diseases. They have a commercial application limited as nutraceuticals due to their weak solubility, instability when exposed to light, heat, and alkaline environments, and low consistency. Polyphenols are important option for the management of noncommunicable diseases. Their bioavailability, biochemical detection, particular molecular targets, ability to interact, and toxic effects are all factors to consider. The remaining outstanding challenges must be actively managed.

5. Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, et al. Oxidative stress, aging, and diseases. Clinical interventions in aging. 2018;13:757. https://doi.org/ 10.2147/CIA.S158513

6. Munialo CD, Naumovski N, Sergi D, Stewart D, Mellor DD. Critical evaluation of the extrapolation of data relative to antioxidant function from the laboratory and their implications on food production and human health: A review. International Journal of Food Science & Technology. May;54(5):1448-2019 59.https://doi.org/10.1111/ijfs.14135

7. Tan BL, Norhaizan ME, Liew W-P-P, Sulaiman Rahman H. Antioxidant and oxidative stress: A mutual interplay in agerelated diseases. Frontiers in pharmacology. 2018;9:1162.

https://doi.org/10.3389/fphar.2018.01162

8. Serafini M, Ghiselli A, Ferro-Luzzi A, Melville C. Red wine, tea, and antioxidants. The Lancet. 1994: 344(8922):626. https://doi.org/10.1016/S01 40-6736(94)92017-6

9. Jumar A, Schmieder RE. Cocoa flavanol cardiovascular effects beyond blood pressure reduction. The Journal of ClinicalHypertension. 2016;18(4):352-8. https://doi.org/10.1111/jch.12715

10. Cheynier V. Polyphenols in foods are more complex than often thought. The American journal of clinical nutrition. 2005;81(1):223S-9S.

https://doi.org/10.1093/ajcn/81.1.223S

11. Amawi H, Ashby CR, Samuel T, Peraman R, Tiwari AK. Polyphenolic nutrients in cancer chemoprevention and metastasis: Role of the epithelial-tomesenchymal (EMT) pathway. Nutrients. 2017;9(8):911.

https://doi.org/10.3390/nu9080911

12. Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and antiinflammatory effects. Current Opinion in Food Science. 2016;8:33-42. https://doi.org/10.1016/j.cofs.2016.02.002

13. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. The American journal of clinical nutrition. 2004;79(5):727-47. <u>https://doi.org/10.1093/ajcn/79.5.727</u>

14. Yahya HM, Day A, Lawton C, Myrissa K, Croden F, Dye L, et al. Dietary intake of 20 polyphenol subclasses in a cohort of UK women. European journal of nutrition. 2016; 55(5):1839-47.

https://doi.org/10.1007/s00394-015-1001-3

15. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, et al. Oxidative Stress inhibits distant metastasis by human melanoma cells. Nature. 2015; 527(7577):186-91.

https://doi.org/10.1038/nature15726

16. Simmons DL, Botting RM & Hla T 2004 Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacological Reviews 56 387–437. https://doi.org/10.1124/pr.56.3.3 17. Liu L, Wu X, Zhang B, Yang W, Li D, Dong Y, et al. Protective effects of tea polyphenols on Exhaustive exercise-induced fatigue, inflammation and tissue damage. Food & nutrition research. 2017; 61(1):1333390. <u>https://doi.org/10.1080/16546628.2017.1333</u> 390

•

18. Eichholzer M, Richard A, Nicastro HL, Platz EA, Linseisen J, Rohrmann S. Urinary lignans and inflammatory markers in the US National Health and Nutrition Examination Survey (NHANES).1999–2004 and 2005– 2008. Cancer Causes & Control. 2014;25(3):395-403. https://doi.org/10.1007/s10552-014-0340-3

19. Münzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC. Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. Journal of the American College of Cardiology. 2017; 70(2):212-29.

20. Moncada S, Higgs A. The L-argininenitric oxide pathway. New England Journal of Medicine. 1993;329(27):2002-12.26. <u>https://doi.org/10.1056/NEJM19931230329</u> <u>2706</u>

21. Schramm DD, Karim M, Schrader HR, Holt RR, Kirkpatrick NJ, Polagruto JA, et al. Food effects on the absorption and pharmacokinetics of cocoa flavanols. Life sciences. 2003; 73(7):857-69. <u>https://doi.org/10.1016/S0024-</u> <u>3205(03)00373-4</u>

22. Magrone T, Russo MA, Jirillo E. Cocoa and dark chocolate polyphenols: from biology to clinical applications. Frontiers in immunology. 2017;8:677. https://doi.org/10.3389/fimmu.2017.00677.

23. Steffen Y, Schewe T, Sies H. (-)-Epicatechin elevates nitric oxide in endothelial cells via inhibition of NADPH

Biochemical and biophysical oxidase. research communications. 2007;359(3):828-33.

https://doi.org/10.1016/j.bbrc.2007.05.200

24. Rein D, Paglieroni TG, Pearson DA, Wun T, Schmitz HH, Gosselin R, et al. Cocoa and wine polyphenols modulate platelet activation and function. The Journal of nutrition. 2000;130(8):2120S-6S. https://doi.org/10.1093/jn/130.8.2120S

25. Guerrero J, Lozano M, Castillo J, Benavente-Garcia O, Vicente V, Rivera J. Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. Journal of Thrombosis and Haemostasis. 2005;3(2):369-

https://doi.org/10.1111/j.1538-76. 7836.2004.01099.x

26. Weinmann S, Roll S, Schwarzbach C, Vauth C, Willich SN. Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC geriatrics. 2010;10(1):14. https://doi.org/10.1186/1471-2318-10-1

27. Valente T, Hidalgo J, Bolea I, Ramirez B, Anglés N, Reguant J, et al. A diet enriched in polyphenols and polyunsaturated fatty acids, LMN diet, induces neurogenesis in the subventricular zone and hippocampus of adult mouse brain. Journal of Alzheimer's disease. 2009; 18(4):849-65. https://doi.org/10.3233/JAD-2009-1188

28. Nehlig A. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. British journal of clinical pharmacology. 2013;75(3):716-27. https://doi.org/10.1111/j.1365-2125.2012.04378.x

29. Van Praag H, Lucero MJ, Yeo GW, Stecker K, Heivand N, Zhao C, et al. Plantderived flavanol (-) epicatechin enhances angiogenesis and retention of spatial memory in mice. Journal of Neuroscience. 2007: 27(22):5869-78. https://doi.org/10.1523/JNEUROSCI.09 14-07.2007

30. Jin T, Song Z, Weng J, Fantus IG. Curcumin and other dietary polyphenols: potential Mechanisms of metabolic actions and therapy for diabetes and obesity. American Journal Physiologyof Metabolism. Endocrinology and 2018;314(3):E201-E5.

https://doi.org/10.1152/ajpendo.00285.2017.

31. Solayman M, Ali Y, Alam F, Islam A, Alam N, Khalil I, et al. Polyphenols: potential future arsenals in the treatment of diabetes. Current pharmaceutical design. 2016;22(5):549-65.27.

32. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing 2013;12(1):376-90. research reviews. https://doi.org/10.1016/j.arr.2012.10.004

33. Kontou N, Psaltopoulou T, Panagiotakos D, Dimopoulos MA, Linos A. The mediterranean diet in cancer prevention: a Journal of medicinal review. food. 2011;14(10):1065-78.

34. Norat T, Aune D, Chan D, Romaguera D. Fruits and vegetables: updating the epidemiologic evidence for the WCRF/AICR lifestyle recommendations for cancer prevention. Advances in nutrition and cancer: Springer; 2014. p. 35-50. https://doi.org/10.1007/978-3-642-38007-5_3

35. Mileo AM, Di Venere D, Abbruzzese C, Miccadei S. Long term exposure to polyphenols of artichoke (Cynara scolymus L.) exerts induction of senescence driven growth arrest in the MDAMB231 human breast cancer cell line. Oxidative medicine and cellular longevity. 2015. https://doi.org/10.1155/2015/363827

36. Das L, Vinayak M. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signalling of inflammation and modulation in Prevention of cancer. PLoS One. 2015;10(4).

https://doi.org/10.1371/journal.pone.012400 0

37. Srivastava RK, Unterman TG, Shankar S. FOXO transcription factors and VEGF antibody neutralizing enhance antiangiogenic effects of resveratrol. Molecular and cellular biochemistry. 2010;337(1-2):201-12.

https://doi.org/10.1007/s11010-009-0300-5